期刊文献+

基于音频内容的语义级场景检索 被引量:1

Audio Semantic_level Context Detection
下载PDF
导出
摘要 本文对基于内容的音频检索提出了一种分级方法,第一级:用HMM对音频事件的统计特性建模;第二级:用SVM结合一些音频事件对特定语义场景建模,完成对语义场景的检索。实验证明,HMM和SVM的结合对音频语义级场景的检索达到比较理想的效果。 In this paper,Audio semantic-level content analysis, we propose a hierarchical approach for content-based retrieval of audio.The first, HMMs are used to model the statistical characteristics of several audio events.And the second, SVMs are used to fuse the characteristics of various audio events related to some specific semantic concepts.,then model semantic context. The experimental results show that the approach is effective in detecting semantic context.
出处 《微计算机信息》 北大核心 2006年第06X期274-276,共3页 Control & Automation
关键词 隐马尔可夫 支持向量 VITERBI算法 HMM,SVM,Viterbi, algorithm
  • 相关文献

参考文献5

  • 1T. Zhang and C.-C.J. Kuo, "Hierarchical System for Contentbased Audio Classification and Retrieval", Proceedings of SPIE,Multimedia Storage and Archiving System III, 1998, 3527:398-409.
  • 2L. Lu, H.-J. Zhang, and H. Jiang, "Content Analysis for Audio Classification and Segmentation", IEEE Transactions on Speech and Audio Processing, 2002, 10(7):504-516.
  • 3D. Gatica-Perez, A. Loui, and M.-T. Sun, "Finding Structure in Home Videos by Probabilistic Hierarchical Clustering", IEEE Transactions on Circuits and Systems for Video Technology, 2003,13( 6): 539-548.
  • 4A. Ekin, A. M. Tekalp, and R. Mehrotra, "Automatic Soccer Video Analysis and Summarization", IEEE Transactions on Image Processing, 2003,12(7):796-807.
  • 5刘虹,黄涛,徐成.基于FPGA的音频处理芯片的设计[J].微计算机信息,2005,21(1):145-147. 被引量:20

二级参考文献1

  • 1孟宪云.可编程ASIC集成数字系统[M].北京:电子工业出版社,1998..

共引文献19

同被引文献8

  • 1Manvi S. S., Ganiger K. and Sutagundar A. V. Human Centered Multimedia Audio Data Retrieval in Computer Networks[C]. 2009 International Conference on Future and Communication, 2009,26-30.
  • 2Li G. H., Wu D. F. and Zhang J. Concept framework for audio information retrieval: ARF [J]. Journal of Computer Science and Technology,2003, 18(5):667-673.
  • 3McKay C., McEnnis D. and Fujinaga I. A large publicly accessible prototype audio database for music research [C]. in Proc. of the International Conference on Music Information Retrieval, 2006,160-163.
  • 4Slaney M. (2002). Mixtures of probability experts for audio retrieval and indexing[C]. ICME2002,1-4.
  • 5Homburg H., Mierswa I., Mller B., et al. A benchmark dataset for audio classification and clustering[C].ISMIR 2005. 2005,528 - 31.
  • 6Goto M., Hashiguchi H., Nishimura T., et al. RWC music database: Popular, classical, and jazz music databases [C]. In Proc. 3rd International Conference on Music Information Retrieval, 2002, 287 - 288.
  • 7Piamsa-Nga P., Alexandridis N. A., Srakaew S., et al. In-clip search algorithm for content-based audio retrieval[C]. ICCIMA 99, 1999, 23-26.
  • 8李国辉,李恒峰.基于内容的音频检索:概念和方法[J].小型微型计算机系统,2000,21(11):1173-1177. 被引量:53

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部