期刊文献+

基于亚正定阵的Volterra系统稳定性的若干新判据 被引量:1

Some new criterions for stability of volterra systems on subpositive definite matrices
下载PDF
导出
摘要 将亚正定阵引入到V o lterra系统,获得了判定该系统在正的平衡态全局稳定、扇形稳定及关联稳定的另一些新方法.从应用情况看,本文方法是有效的而且更为实用. Subpositive definite matrix was leaded into Volterra systems, and some new criterions for Volterra systems on overall situation stability, Sector stability and connection stability were acquired. According to the application, these methods are valid and more practical.
作者 刘锋 葛照强
出处 《纯粹数学与应用数学》 CSCD 北大核心 2006年第2期198-203,共6页 Pure and Applied Mathematics
基金 江苏省教育厅自然科学研究计划项目(03KJD110088)资助
关键词 亚正定阵 Volterra系统 全局稳定性 扇形稳定性 关联稳定性 subpositive definite matrics, volterra systems, overall situation stability, sector stability
  • 相关文献

参考文献9

  • 1Macacthur R H. Species packing and competitive equilibrium for among species[J]. Theory population Biol. ,1970(1):1-11.
  • 2Goh B S. Sector stability of a complex ecosystem model [J]. Math. Biosci. , 1978,40 : 157-166.
  • 3Liao Xiaoxin. Stability of general ecological systems and neural networks systems[C]. Proc. of the first world congress of nonlinear analyst. New York :walter de Gruyter Berline, 1996:1325-1340.
  • 4程远纪.控制系统无穷扇形角的绝对稳定性[J].数学学报(中文版),1990,33(3):289-294. 被引量:4
  • 5张炳根.具一步以上的食物链的生态系统的稳定性[J].应用数学学报,1983,6(2):236-236.
  • 6屠伯埙.亚正定阵理论(Ⅰ)[J].数学学报(中文版),1990,33(4):462-471. 被引量:214
  • 7黄琳.稳定性理论[M].北京:北京大学出版社,1982.
  • 8刘锋.亚正定阵在Gilpin-Ayala系统稳定性中的应用[J].数学的实践与认识,2005,35(8):123-126. 被引量:3
  • 9Liu Feng,Ge Zhaoqiang. Some new criterions for stability of general non-linear ecosystems based on subpositive definite matrix[J]. International Journal of Intelligent Information Management Systems and Technologies ,2005(1):117-122.

二级参考文献17

  • 1屠伯埙,数学年刊.A,1989年,10卷,6期,733页
  • 2屠伯埙,数学杂志,1989年,8卷,1期,121页
  • 3屠伯埙,数学年刊.A,1987年,8卷,6期,659页
  • 4屠伯埙,复旦学报,1986年,25卷,1期,39页
  • 5屠伯埙,线性代数方法导引,1986年
  • 6华罗庚,数学学报,1955年,5卷,4期,463页
  • 7赵素霞,中国科学.A,1987年,8期,785页
  • 8赵素霞,科学通报,1983年,28卷,13期,831页
  • 9秦元勋,运动稳定性理论与应用,1981年
  • 10赵素霞,数学学报,1979年,22卷,4期,404页

共引文献217

同被引文献9

  • 1彭晓林.非线性微分系统的Lipschitz稳定性[J].纯粹数学与应用数学,1993,9(1):51-56. 被引量:8
  • 2刘春潮,彭锦,李永昆.时滞分流抑制型细胞神经网络的周期解的指数稳定性(英文)[J].纯粹数学与应用数学,2005,21(4):335-340. 被引量:10
  • 3Liao X X,Fu Y L,Xie S L.Globally exponential stability of Hopfield networks[J].Adv.Syst.Sci.Appl.,2005,5:533-545.
  • 4Cohen M A,Grossberg S.Absolute stability of global pattern formation and parallel memory storage by competitive neural networks[J].IEEE Trans.Syst.Man and Cyber,1983,13:815-826.
  • 5Chen Z,Zhao D H,Ruan J.Dynamic analysis of high-order Cohen-Gressberg neural networks with time delay[J].Chaos,Solitons and Fractals,2007,32:1538-1546.
  • 6Wu W,Cui B T,Lou X Y.Some criteria for asymptotic stability of Cohen-Grossberg neural networks with time-varying delays[J].Neucom,2007,70:1085-1088.
  • 7Mao Z S.Dynamical analysis of Cohen-Grossberg neural networks with distributed delays[J].Phys.Lett.A,2007,364(1):38-47.
  • 8Liao X X,Luo Q,Zeng Z G.Positive invariant and global exponential attractive sets of neural networks with time-varying delays[J].Neucom,2008,71(4/6):513-518.
  • 9Boyd S,Ghaoui E L,Feron E,et al.Linear Matrix Inequality in System and Control Theory[M].Philadelphia:SIAM,1994.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部