期刊文献+

基于HMM的故障诊断特征提取和聚类技术 被引量:3

Feature Extraction and Clustering Technique of Rotating Machinery Fault Diagnose Based on HMM
下载PDF
导出
摘要 重点介绍了运用HMM进行故障诊断特征矢量的提取。在试验的基础上,对4种典型故障进行了数据采集。通过加窗处理,采用自相关法提取12阶LPC倒谱系数,用LBG聚类算法进行矢量量化,得出码本矢量。运用这些矢量训练各故障对应的HMM模型,然后将所测故障数据按上述方法矢量量化后输入到训练好的HMM中,求出似然概率值,值最大者即为故障状态。结果表明,利用该种方法进行特征提取并与HMM方法相结合能很好分类出各种故障模式,达到诊断目的。 This paper focused on extraction of feature vector of fault based on HMM. Four typical fault data are gathered in experiments, the twelve orders of LPC cepstrum coefficients are distilled through the dispose adding window and the self- correlation and the codebook vectors are obtained through LBG clustering algorithm. Each HMM model of the faults is trained using these vectors. Then, the log-likelihood probability is calculated by inputting the fault data that have been quantified into the trained HMM. The maximum is in the fault state. The results show that combining this method with HMM can diagnose machinery effectively faults.
出处 《振动.测试与诊断》 EI CSCD 2006年第2期92-96,共5页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(编号:50275024)
关键词 特征提取 矢量量化 故障诊断 HMM feature extraction vector quantization fault diagnose hidden Markov model (HMM)
  • 相关文献

参考文献8

  • 1Smyth P. Hidden markov models for fault detection in dynamic systems [J]. Pattern Recognition, 1994, 27(1) : 149-164.
  • 2Yuk D S, Che C W, Zin Limin. Environment independent continuous speech recognition using neural networks and hidden Markov models[J]. Proc.IEEE, 1996,6(5):3358-3361.
  • 3冯长建,丁启全,吴昭同.线性AR-HMM在旋转机械故障诊断中的应用[J].汽轮机技术,2002,44(5):301-303. 被引量:4
  • 4Ertunc H M, Loparo K A, Ocak H. Tool wear condition monitoring in drilling operations using hidden Markov model [J]. International Journal of Machine tools & Manufacture, 2001,41 (3): 1348-1363.
  • 5Bunks C, McCathy K, Al-Ani T. Condition-based maintenance of machines using hidden Markov models[J]. Mechanical Systems and Processing, 2000, 14:597-612.
  • 6Kwon K C,Kim J H. Accident identification in nuclear power plants using hidden Markov models [J].Engineering Application of Artificial Intelligence,1999,12:491-501.
  • 7Gales M J G. Semi-tied covariance matrices for hidden Markov models[J]. IEEE Transactions on Speech and Audio Processing, 1999,7 : 272-281.
  • 8Lee J M, Kim S J, Hwang Y. Mechanical signal analysis using hidden Markov model [C] // Ninth International Congress on Sound and Vibration,Orlando, FL, 2002.

共引文献3

同被引文献33

  • 1赵荣珍,李超,张优云.中值与小波消噪集成的转子振动信号滤波方法研究[J].振动与冲击,2005,24(4):74-77. 被引量:15
  • 2王洪群,彭嘉雄,于秋则.采用动态HMM概率分布模型的人眼精确定位[J].中国图象图形学报,2006,11(1):26-32. 被引量:7
  • 3林果园,郭山清,黄皓,曹天杰.基于动态行为和特征模式的异常检测模型[J].计算机学报,2006,29(9):1553-1560. 被引量:25
  • 4申宇燕,康熊,刘峰.基于HMM的客车转向架故障诊断与应用[J].铁道机车车辆,2006,26(4):24-25. 被引量:3
  • 5Gebre-Egziahber,Demoz.Design and Performance Analysis of a Low-Cost Aided Dead Reckoning Navigator[D].Stanford:Stanford University,2001.
  • 6Ales Filip,Hynek Mocek,Lubor Bazant.GPS/GNSS Based Train Positioning for Safety Critical Applications[J].SIGNAL + DRAHT,2001,5:51-55.
  • 7高继祥.铁道信号运营基础[M].北京:中国铁道出版社,1998.
  • 8Tysen Mueller,Darren Dow,Jeff Brawner,Richard Bortins,Paul Davis,Doug Sweet.Design and Testing of a Robust High Speed Rail Prototype GPS Locomotive Location System[C]// ION GNSS 17th International Technical Meeting of the Satellite Division,2004.
  • 9GUO D, PENG Z K. Vibration analysis of a cracked rotor using Hilbert-Huang transform [J]. Mechanical Systems and Signal Processing, 2007,21 (8) : 3030-3041.
  • 10JONATHAN S S. The local mean decomposition and its appli- cation to EEG perception data [J]. Journal of the Royal Society Interface, 2005,2 (5) : 443-454.

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部