摘要
讨论非完整系统响应的概率密度函数,首先给出非完整系统在Poisson白噪声下的概率密度函数所满足的广义Fokker-Planck方程,然后引入扰动法,以激励为高斯白噪声下的F-P-K方程的精确的平稳解为基本解,利用扰动方法来获得激励为Poisson白噪声时的各次修正项.
In this paper, we study the equation governing the evolution of the transition probability density function of stochastic nonholonomic system. Firstly, we give the generalized Fokker-Planck equation of nonholonomic system excited by Poisson white noise. Secondly, we choose the solution of F-P-K equation of nonholonomic system excited by Gauss white noise as an exact result. Then, by virtue of disturbance method, we discuss the probability density function of nonholonomic system excited by Poisson white noise.
出处
《辽宁师范大学学报(自然科学版)》
CAS
北大核心
2006年第2期172-175,共4页
Journal of Liaoning Normal University:Natural Science Edition