期刊文献+

基于感知机的故障树最小割集算法 被引量:4

Minimum Cuts of Fault Tree Based on Perceptron Algorithm
下载PDF
导出
摘要 在人工神经元网络原理的基础上,提出了一种计算复杂系统最小割集的方法。该方法根据逻辑“与”和“或”门具有线性可分割的特点,选用了基于M-P模型算法的感知机网络作为计算模型,理论推导出故障树中的逻辑关系与感知机模型中神经网络基本单元之间的转换规则,利用该规则可将所建故障树转化成便于编程求解的由神经网络基本单元组成的神经网络树。实例计算结果表明,感知机网络模型适合表达故障树中的逻辑关系,神经网络树所反映的基本事件与顶事件之间的映射关系便于编程求解,并可快速准确地获得复杂系统故障树的最小割集。 An algorithm is provided for minimum cuts of a fault tree about a complex system based on the rationale in artificial neural network principle. According to the characteristic that the logic of "and" and "or" gates can be separated by a line, a perceptron net based on M- P mode is selected as a model for calculation. A conversion rule is derived theoretically between the logic of a fault tree and the neural unit by which the fault tree can be converted to a neural tree. The neural tree is composed of neural twits, and is easy to calculate by programing in the computer. The results of exemplified calculation demonstrate that the logic of a fault tree can be described ccrnpafibly by the perceptroon net. The mapping described by the neural tree between basic and top incidents is easy to program, and minimum cuts of a complex fault tree can be accurately and quickly obtained.
出处 《中国安全科学学报》 CAS CSCD 2006年第5期141-144,共4页 China Safety Science Journal
关键词 布尔代数 算法 故障树 神经网络 感知机 最小割集合 boolean algebra arithmetic fault tree neural network perceptron minimum cuts
  • 相关文献

参考文献3

二级参考文献6

共引文献30

同被引文献29

  • 1王广彦,马志军,胡起伟.基于贝叶斯网络的故障树分析[J].系统工程理论与实践,2004,24(6):78-83. 被引量:98
  • 2宋华,张洪钺,王行仁.T-S模糊故障树分析方法[J].控制与决策,2005,20(8):854-859. 被引量:60
  • 3董玉革,朱文予,陈心昭.模糊故障树分析及应用[J].合肥工业大学学报(自然科学版),1996,19(4):35-41. 被引量:29
  • 4Suresh P V,Babar A K,Raj V V.Uncertainty in fault tree analysis:a fuzzy approach[J].Fuzzy Sets and Systems,1996,8:135-141.
  • 5Zadeh L A.Fuzzy sets[J].Information and Control,1965,8:338-353.
  • 6DHILLON B S. Design reliability: fundamentals and applications[ M]. New York: CRC Press, LLC, 1999:167- 182.
  • 7MAHADEVAN S, ZHANG R, SMITH N. Bayesian networks for system reliability reassessment [ J ]. Structural Safety, 2001,23:231-251.
  • 8KRISTIAN G L, AADERS L. madsen maximal prime sub-graph decomposition of Bayesian networks[J]. IEEE Transactions, man and cybernetics, part B : cybernetics, 2002,32( 1 ) :21-31.
  • 9WEBER P, JOUFFE L. Complex system reliability modeling with Dynamic Object Oriented Bayesian Networks (DOOBN) [ J ]. Reliability Engineering and System Safety, 2006,91 : 149-162.
  • 10WILSON A G, HUZURBAZAR A V. Bayesian networks for multilevel system reliability [ J ]. Reliability Engineering and System Safety, 2007,92:1413-1420.

引证文献4

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部