摘要
根据遗传算法参数自适应控制方法的不同分类,采用基于启发式规则的参数控制方法对遗传算法的种群数进行了宏观调控和微观调控。并采用不同特点的模糊控制器分别控制交叉率和变异率,使种群数、交叉率和变异率都能够随进化的实际情况发生自动调整,形成了一种新的种群数变化的模糊自适应遗传算法。实验数据表明这种算法能够有效防止遗传算法早收敛,同时也说明对参数进行自适应控制能够使遗传算法性能大大提高。
Adaptive control strategies for parameters of genetic algorithms can be built according to the heuristic rules or artificial intelligent techniques. A fuzzy adaptive genetic algorithm with variable population size (FAGAVPS) is proposed to overcome premature convergence and slow convergence speed at later evolution process of simple genetic algorithm. FAGAVPS uses both macroscopical and microscopical control based on heuristic rules to realize population size adaptation. The crossover rate and mutation rate of the algorithm are also tuned automatically in the evolutionary process by two fuzzy controllers with different characteristics. The experiments show that FAGAVPS can efficiently avoid premature convergence and the performance of genetic algorithm can be greatly raised by applying adaptive control strategies.
出处
《华东理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2006年第5期601-606,共6页
Journal of East China University of Science and Technology
基金
国家863计划项目(AA413130)
"十五"国家高技术研究发展(863)计划项目(2003AA412010)
关键词
遗传算法
参数控制
自适应
早收敛
模糊控制
genetic algorithm
premature control
adaptation
premature convergence
fuzzy control