期刊文献+

遗传算法参数自适应控制的新方法 被引量:6

New Adaptive Control Strategies for Parameters of Genetic Algorithms
下载PDF
导出
摘要 根据遗传算法参数自适应控制方法的不同分类,采用基于启发式规则的参数控制方法对遗传算法的种群数进行了宏观调控和微观调控。并采用不同特点的模糊控制器分别控制交叉率和变异率,使种群数、交叉率和变异率都能够随进化的实际情况发生自动调整,形成了一种新的种群数变化的模糊自适应遗传算法。实验数据表明这种算法能够有效防止遗传算法早收敛,同时也说明对参数进行自适应控制能够使遗传算法性能大大提高。 Adaptive control strategies for parameters of genetic algorithms can be built according to the heuristic rules or artificial intelligent techniques. A fuzzy adaptive genetic algorithm with variable population size (FAGAVPS) is proposed to overcome premature convergence and slow convergence speed at later evolution process of simple genetic algorithm. FAGAVPS uses both macroscopical and microscopical control based on heuristic rules to realize population size adaptation. The crossover rate and mutation rate of the algorithm are also tuned automatically in the evolutionary process by two fuzzy controllers with different characteristics. The experiments show that FAGAVPS can efficiently avoid premature convergence and the performance of genetic algorithm can be greatly raised by applying adaptive control strategies.
作者 何宏 钱锋
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第5期601-606,共6页 Journal of East China University of Science and Technology
基金 国家863计划项目(AA413130) "十五"国家高技术研究发展(863)计划项目(2003AA412010)
关键词 遗传算法 参数控制 自适应 早收敛 模糊控制 genetic algorithm premature control adaptation premature convergence fuzzy control
  • 相关文献

参考文献7

  • 1何宏,钱锋.模糊自适应遗传算法的原理和发展[J].计算机工程与应用,2005,41(22):17-20. 被引量:3
  • 2Youngsu Yun,Mitsuo Gen.Performance analysis of adaptive genetic algorithms with fuzzy logic and heuristics[J].Fuzzy Optimization and Decision Making,2003,2:161-175.
  • 3Eiben A E,Hinterding R,Michalewicz Z.Parameter control in evolutionary algorithms[J].IEEE Transactions on Evolutionary Computation,1999,3(2):115-134.
  • 4Herrera F,Lozano M.Adaptation of genetic algorithm parameters based on fuzzy logic controllers[A].Genetic Algorithms and Soft Computing[C].[s.l.]:Physica-Verlag,1996.95-125.
  • 5吴浩扬,朱长纯,常炳国,刘君华.基于种群过早收敛程度定量分析的改进自适应遗传算法[J].西安交通大学学报,1999,33(11):27-30. 被引量:75
  • 6Arabas J,Michalewicz Z,Mulawka J.GAVaPS--A genetic algorithm with varying population size[A].Proceedings of the First IEEE Conference on Evolutionary Computation[C].Orlando,Florida:IEEE Press,1994.73-78.
  • 7Ack T B,Eiben A E,van der Vaart N A L.An empirical study on GAs"without parameters"[A].Proceedings of the 6th Conference on Parallel Problem Solving from Nature[C].Berlin:Springer,2000.315-324.

二级参考文献28

  • 1张晓馈,控制理论与应用,1998年,15卷,1期,17页
  • 2周远晖,清华大学学报,1998年,38卷,3期,93页
  • 3Qi Xiaofeng,IEEE Trans Neural Networks,1994年,5卷,1期,120页
  • 4F Herrera,M Lozano. Fuzzy Genetic Algorithms:Issues and Models [R].Technical Report, Dept of Computer Science and A I University of Granada, 1871-Granada,Spain, 1999.
  • 5Yougsu Yun ,Mitsuo Gen. Performance analysis of adaptive genetic algorithms with fuzzy logic and heuristics[J].Fuzzy Optimization and Decision Making,2003;2:161~175.
  • 6L M Galantucci,G Percoco&,R Spina. Assembly and disassembly planning by using fuzzy logic &genetic algorithms[J].International Journal of Advanced Robotic Systems, 2004; 1 (2): 67~74.
  • 7Voigt H M.Fuzzy evolutionary algorithms[R].Technical Report tr-92-038,International Computer Science Institute(ICSI),Berkeley,1992.
  • 8F Herrera,M Lozano,JL Verdegay. Fuzzy connectives based crossover operators to model genetic algorithms population diversity[J].Fuzzy Sets and Systems, 1997;92(1 ) :21~30.
  • 9F Herrera,M Lozano. Fuzzy adaptive genetic algorithms:design,taxonomy, and future directions [J].Soft Computing, 2003; 7: 545~562.
  • 10F Herrera, M Lozano. Adaptation of genetic algorithm parameters based on fuzzy logic controllers[C].In:F Herrera & JL.Verdegay eds.Genetic Algorithms and Soft Computing. Physica-Verlag,1996:95~125.

共引文献76

同被引文献25

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部