摘要
设V(G)、E(G)和F(G)分别为平面图G的点集、边集和面集。G的完备色数Xc(G)是使得V(G)∪E(G)∪F(G)中相邻或相关联的元素间均染不同色的最少颜色数。本文证明了:对无割点的外平面图G,有Xc(G)≤max{7,△(G)+1},其中△(G)为G的最大度数。
Let G be a plane graph.V(G),E(G)and F(G)are the vertex set,the edge set and the face set.The entire chromatic number x_c(G)of G is the least number of colors assigned to V(G)∪E(G)∪F(G)such that no two adjacient or incident elements receive the same color.In the paper,we prove that x_c(G)≤max{7,△(G)+1} if G is a outerplanar graph with no cut vertices,where△(G)is the maximum degree of G.
出处
《山东矿业学院学报》
CAS
1996年第2期219-222,共4页
Journal of Shandong University of Science and Technology(Natural Science)
关键词
平面图
外平面图
完备色数
染色
图
plane graph
outerplanar graph
the entire coloring
color
graph