期刊文献+

酿酒酵母胞质内NADH的代谢调控 被引量:3

Metabolic Regulation of the Cytosolic NADH in the Yeast Saccharomyces cerevisiae
下载PDF
导出
摘要 酿酒酵母(Saccharomyces cerevisiae)的生长过程有大量的胞内NADH产生。有氧途径中,胞外的NADH脱氢酶、三磷酸甘油穿梭酶系是线粒体内NADH氧化的最主要机制。该文主要讨论以下三个方面的内容:不同生理环境下促成线粒体胞内NADH氧化的各主要机制的作用;借助电子传递链开启NADH从胞质脱氢酶到线粒体的通道,各代谢动力学的有序进行;各种酶形成超分子复合物,尤其是起关键调控作用的酶形成具相似生理功能的高整合性功能酶。 During growth of Saccharomyces cerevisiae, an excess of NADH is generated in the cytosol. Aerobically, it has been shown that the external NADH dehydrogenase, as well as the glycerol - 3 - phosphate dehydrogenase shuttle are the most important mechanisms for mitochondrial oxidation of cytosolic NADH. This review summarized the recent results showing (i) the contribution of each of the mechanisms involved in mitochondrial oxidation of the cytosolic NADH, under different physiological situations ; (ii) the kinetic and structural properties of these metabolic pathways in order to charmel NADH from cytosolic dehydrogenases to the inner mitochondrial membrane and (iii) the organization in supra- molecular complexes and, the peculiar ensuing kinetic regulation of some of the erzymes leading to a highly integrated functioning of enzymes having a similar physiological function.
出处 《生物技术》 CAS CSCD 2006年第3期90-93,共4页 Biotechnology
关键词 酿酒酵母 NADH代谢 电子传递链 超分子复合物 调控 yeast NADH metabolism respiratory chain regulation supra - molecular complexes
  • 引文网络
  • 相关文献

参考文献24

  • 1Albers E, Lidén G, Larsson C, et al. Anaerobic redox balance and nitrogen metabolism in Saccharomyces cerevisiae [ J ]. Recent Res Dev Microbiol., 1998,2 : 253 - 279.
  • 2Small W C, McAlister H L. Identification of a cytosohcally directed NADH dehydrogenase in mitochondria of Saccharomyces cerevisiae [J ]. J Bacteriol.,1998,180:4051 - 4055.
  • 3Larsson C,Pahlman I L, Ansell R, et al. The importance of the glycerol-3 - phosphate shuttle during aerobic growth of Saccharomyces cerevisiae[J]. Yeast., 1998, 14:347 - 357.
  • 4Pahlman I L, Gustafsson L, Rigoulet M, et al. Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae [ J ]. Yeast, 2001,18:611 - 620.
  • 5Pahlman I L, Larsson C, Avéret N, et al. Kinetic regulation of the mitochondrial glycerol - 3 - phosphate dehydrogenase by the extemal NADH dehydrogenase in Saccharomyces cerevisiae [ J ] . J Biol Chem., 2002,277 : 27991- 27995.
  • 6Overkamp K M, Bakker B M, Kotter P, et al. In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria[J]. J Bacteriol., 2000, 182:2823 - 2830.
  • 7Dejean L, Bunoust O, Schaeffer J, et al. Control of growth yield of yeast on respiratory substrate by mitochondrial content [ J ]. Thermochim Acta.,2002, 394: 113- 121.
  • 8Larsson C, Pahlman I L, Gustafsson L. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae [ J]. Yeast, 2000, 16:797 -809.
  • 9Bakker B M, Overkamp K M, Maris AJA, et al. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae [J]. FEMS Microbioi Rev. ,2001,25:15 - 37.
  • 10Fang J, Beattie, Diana S. External alternative NADH dehydrogenase of Saccharomyces cerevisiae : a potential source of superoxide[J]. Free Radical Biology and Medicine,2003, 34(4) :478 - 488.

同被引文献30

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部