期刊文献+

不动点集为RP(8) ∪ P(8,2n-1)的对合

Involutions Fixing RP(8) ∪ P(8, 2n-1)
下载PDF
导出
摘要 设(M,T)是一个带有光滑对合T的光滑闭流形,T的不动点集为RP(8)P(8,2n-1).本文证明了(M,T)必协边于(RP(8)×RP(8),twist)和(P(8,RP(2n)),T′)之一. Let (M, T) be a smooth closed maniflod with a smooth involution T whose fixed point set is RP(8) ∪ P(8, 2n - 1). The authors prove that (M, T) is bordant to one of the involutions (RP(8) × RP(8), twist) and (P(8, RP(2n)), T′).
出处 《数学年刊(A辑)》 CSCD 北大核心 2006年第3期389-394,共6页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10371029) 河北省自然科学基金(No.103144) 留学回国人员科研启动基金资助的项目
关键词 对合 不动点集 示性类 协边类 Involution, Fixed point set, Characteristic class, Bordism class
  • 相关文献

参考文献8

  • 1Conner P. E. Differentiable Periodic Maps (2nd ed) [M], Lecture Notes in Math., 738,Berlin and New York: Springer, 1979.
  • 2Lu Z., Involutions fixing RP^odd P(h, i) Ⅰ [J], Trans. Amer. Math. Soc., 2002, 354:4539-4570.
  • 3Lu Z., Involutions fixing RP^odd P(h, i) Ⅱ[J], Trans. Amer. Math. Soc., 2004,356:1291-1314.
  • 4Kosniowski C. and Stong R. E., Involutions and characteristic numbers [J], Topology,1978, 17:309-330.
  • 5Milnor J. W. and Stasheff J. D., Characteristic Classes [M], Princeton: Princeton University Press, 1974.
  • 6Fujii M. and Yasui T, KO-cohomologies of Dold manifold [J], Math. J. Okayama Univ.,1973, 16:55-84.
  • 7Stong R. E. Vector bundles over Dold manifolds [J], Fundamenta Mathematicae, 2001,169:85-95.
  • 8Chen D. H. Involutions fixing RP(8) P(8, 2^n - 1) [J], J. of Sichuan Univ., 2002,6:977-981.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部