期刊文献+

位置参数分布族中Fiducial分布与后验分布的关系

The Relationship Between Fiducial Distributions and Posterior Distributions in Location Family
下载PDF
导出
摘要 本文考虑本质位置参数分布族中,参数的Fiducial分布与后验分布的等同问题.首先讨论了如何给出Fiducial分布,分析结果表明以分布函数形式给出Fiducial分布要比密度函数形式合理,同时,证明了所给的Fiducial分布具有频率性质.然后,研究在参数受到单侧限制时,Fiducial分布与后验分布等同的问题,给出的充要条件是分布族为指数分布族,此时,先验分布是一个广义先验分布,它不能被Lebesgue测度控制.最后,证明了在参数限制在一个有限区间内时,Fiducial分布与任何先验(包括广义先验分布)下的后验分布不等同. In this paper, the family of distributions with an essential location parameter is considered. The focus of the paper is wether the fiducial distributions of location parameter are Bayes distributions, i.e., posterior distributions with some prior when the parametric space is not the whole real line. First how to represent fiducial distributions is discussed. The results are that fiducial distributions represented by cumulate distribution functions are reasonable, but by density functions are not, and the fiducial distributions given in this paper have a frequentist property. Then, that the fiducial distributions of location parameter truncted in one side to be the Bayes distributions is studied. A necessary and sufficient condition is that the population family of distributions is the family of exponential distributions, while the prior distribution is an improper prior which is not dominated by Lebesgue measure. Finally when the location parameter takes values in a finite interval, it is proved that fiducial distributions are not the Bayes distributions under any prior distribution including improper prior.
出处 《数学年刊(A辑)》 CSCD 北大核心 2006年第3期417-424,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10271013)资助的项目
关键词 Fiducial分布 先验分布 后验分布 LEBESGUE测度 Fiducial distribution, Prior distribution, Posterior distribution, Lebesgue measure
  • 相关文献

参考文献6

  • 1Efron B, Fisher R. A. in the 21st century [J]. Statistical Science, 1998, 13(2):95-122.
  • 2Fisher R. A. Inverse Probablity [J], Proc. Cambridge. Philos Soc., 1930, 26:528-535.
  • 3Grundy P. M. Fiducial distributions and prior distributions: An example in which the former cannot be associated with the latter [J], J. R. Statist. Soc. B, 1956, 18:217-212.
  • 4Lindley D. V., Fiducial distributions and Bayes' theorem [J], J. R. Statist. Soc. B, 1958,20:102-107.
  • 5Koroese A. H., Salmoe D. and Schaafsma W., An optimum property for fiducial inference [J], Statistics and Decision, 1999, 17:285-291.
  • 6Seidenfeld T., Fisher R. A.'s fiducial argument and Bayes' theorem [J], Statistical Science, 1992, 7(3):358-368.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部