期刊文献+

格群的子积根式类(Ⅰ)

Subproduct Radical Classes of l Groups
下载PDF
导出
摘要 一组l-群U称作一个子积根式类,如果它封闭于取凸l-子群、作凸l-子群的并及作完全次直积.本文证明了l-群的子积根式类由其对应的子积根式映射所唯一决定,并证明了两个子积根式类的积还是一个子积根式类. A family R of l groups is considered as a subproduct radical class if R is clsoed under taking convex l subgroups, forming joins of convex l subgroups and forming direct products. In this paper it is proved that a subproduct radical class of l groups is uniquely determined by the corresponding subproduct radical mapping, and that the product of two subproduct radical classes is also a subproduct radical class. Finally, the structure for subproduct radical class generated by a family of l groups is given.
作者 道荣
出处 《河海大学学报(自然科学版)》 CAS CSCD 1996年第4期6-11,共6页 Journal of Hohai University(Natural Sciences)
关键词 格群 子积根式类 根式映射 lattice ordered group( l group) subproduct radical class subproduct radical mapping
  • 相关文献

参考文献2

  • 1仝道荣,International Journal of Mathematical Sci,1994年,2卷,17期,361页
  • 2仝道荣,Czech Math J,1992年,42卷,117期,129页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部