摘要
设P(G,λ)是图G的色多项式,如果对任意使P(G,λ)=P(H,λ)的图H都与G同构,则称G是色唯一图。这里通过比较图的特征子图的个数,讨论了由Koh和Teo在文献[1]中提出的问题(若|ni-nj|≤2,1≤i,j≤t且min{n1,n2,…,nt}充分大,K(n1,n2,…,nt)是否为色唯一图?)。证明了,若|ni-nj|≤2且∑ti=1ni>t22+t t-1,则K(n1,n2,…,nt)是色唯一图;若ai=0或k,∑ti=1n+ai>t28k2+|t2k|t-1,则K(n+a1,n+a2,…,n+at)是色唯一图。其条件比文献[4]中的条件较好一些。
Let P(G,λ)be the chromatic polynomial of graph G.A graph G is chromatically unique if any graph H,P(λ)=P(G,λ) implies H≌G.Comparing the numbers of the characteristic subgraphs of the graphs,we discuss the problem (for each t≥2,is the graph K(n1,n2,…,nt) chromatically unique if |ni-nj|≤2 for all i,j=1,2,…,t and if min{n1,n2,…,nt} is sufficiently large?) brought forward by Koh and Teo in [1].We prove that K(n1,n2,…,nt) is chromatically unique for |ni-nj|≤2 and t↑∑↑i=1 ni〉t^2/2+t√t-1,Let 0i=0 or k,and we prove that K(n+α1,n+α2,…,n+αt) is chromatically unique for t↑∑↑i=1 ni〉t^2k^2/8+|tk|/2√t-1,The condition is better than that in [4].
出处
《运筹与管理》
CSCD
2006年第3期94-98,共5页
Operations Research and Management Science
关键词
运筹学
色唯一图
特征子图
完全t部图
色等价
operational research
chromatically unique graph
characteristic sub-graphs
complete t-partite graph
chromatically equivalent