摘要
设K_n是具有n个顶点的完全图,f(n)是满足下列条件的最小正整数:对于任意的正整数m≥f(n),存在K_n的一个m边着色,使得K_n中的任一个K_4至少含5种颜色.Erd(?)s和Gàrfàs给出了f(n)的上下界2/3n<f(n)<n;并且证明了f(9)=8.唐明元曾经证明了f(10)=9.作者曾经证明了f(11)=10,在此文中作者又进一步证明了f(12)=11,f(13) =12.
Let Kn be the complete graph with n vertices and f(n) the smallest positive integer satisfying the following condition : for any positive integer m ≥f(n) , there is an m - edge coloring of Kn such that every K4 in Kn gets at least 5 colors. Erdǒs and Gyáfás gave the upper-lower bound of f(n) : (2/3)n 〈 f(n)〈 n and proved f(9) = 8. In [3], Tang proved f(10) = 9. In [4] we provedf(11) = 10. In this paper, we prove f(12) = 11 and f(13) = 12.
出处
《上海师范大学学报(自然科学版)》
2006年第3期17-20,共4页
Journal of Shanghai Normal University(Natural Sciences)