摘要
The surface treatment of silca fume with silane coupling agent prior w incorporation in a cement mortar resulted in composites exhibiting increuses in loss tangent by 5%-200% and storage modulus by 10%-20% , relative to the value obtained by using as-received silica fume. The scanning electron microscopy (SEM) images iindicate that there is a morphological difference in the cement paste with treated and as-received silica fume, The, X-ray diffraction (XRD), infrared (IR) spectrum analyses and mercury intrusion porosimetry ( MIP ) have provided evidence to understand the reaction mechanism between treated silica .fume and the hydrate product of cement. This has led to the establishment of an initial microscopic model describing the damping behavior of cement matrix.
The surface treatment of silca fume with silane coupling agent prior w incorporation in a cement mortar resulted in composites exhibiting increuses in loss tangent by 5%-200% and storage modulus by 10%-20% , relative to the value obtained by using as-received silica fume. The scanning electron microscopy (SEM) images iindicate that there is a morphological difference in the cement paste with treated and as-received silica fume, The, X-ray diffraction (XRD), infrared (IR) spectrum analyses and mercury intrusion porosimetry ( MIP ) have provided evidence to understand the reaction mechanism between treated silica .fume and the hydrate product of cement. This has led to the establishment of an initial microscopic model describing the damping behavior of cement matrix.
基金
FundedbytheNationalNaturalScienceFoundationEmphasisProjectofChina(50238040),andGuangdongProvincialNaturalScienceFoundationofChina(5300894)