期刊文献+

Thermal Instability and Microstructure of Strontium M-type Hexaferrite Nanoparticles Synthesized by Citrate Approach

Thermal Instability and Microstructure of Strontium M-type Hexaferrite Nanoparticles Synthesized by Citrate Approach
下载PDF
导出
摘要 The dried gel of SrFe12O19, prepared by citrate approach, was investigated by means of infrared spectroscopy ( IR ), thermogravimetric analysis ( TG ), differential scanning calorimetry ( DSC ), X- ray diffraction( XRD ) techniques, energy dispersive spectroscopy( EDS ), and transmission electron microscopy( TEM ). The thermal instability and the thermal decomposition of low-temperature strontium M-type hexaferrite crystallized at about 600℃ were confirmed for the first time by XRD method. The decomposition of the low-temperature strontium M-type hexaferrite took place at about 688.6℃ determined by DSC investigation. The low-temperature strontium M-type hexaferrite nanopartieles were decomposed into SrFeO2.5 with an orthorthombic cell and Fe2O3 with a tetragonal cell as well as possibl α-Fe2O3 . The agglomerated particles with sizes less than 200 nm obtained at 800℃ were plesiomorphous to strontium M-type hexaferrite. The thermally stable strontium M-type hexaferrite nanopartieles with sizes less than 100um cotdd take place at 900 ℃ . Up to 1000 ℃ , the phose transformotion to form strontium M-type hexaferrite was ended, the calcinations with the sizes more than 1μm were composed of α-Fe2O3 and strontium M-type hexaferrite. The method of distinguishing γ-Fe2O3 with a spinel structure from Fe2O3 with tetragonal cells by using powder XRD method was proposed. Fe2O3 with tetragonal cells to be crystallized before the crystallization of thermally stable strontium M-type hexaferrite was confirmed for the first time. The reason why α- Fe2O3 as an additional phase appears in the calcinations is the cationic vacancy of stroutium M-type hexaferrite , SrFe12-x□O19 (0≤x ≤0.5). The dried gel of SrFe12O19, prepared by citrate approach, was investigated by means of infrared spectroscopy ( IR ), thermogravimetric analysis ( TG ), differential scanning calorimetry ( DSC ), X- ray diffraction( XRD ) techniques, energy dispersive spectroscopy( EDS ), and transmission electron microscopy( TEM ). The thermal instability and the thermal decomposition of low-temperature strontium M-type hexaferrite crystallized at about 600℃ were confirmed for the first time by XRD method. The decomposition of the low-temperature strontium M-type hexaferrite took place at about 688.6℃ determined by DSC investigation. The low-temperature strontium M-type hexaferrite nanopartieles were decomposed into SrFeO2.5 with an orthorthombic cell and Fe2O3 with a tetragonal cell as well as possibl α-Fe2O3 . The agglomerated particles with sizes less than 200 nm obtained at 800℃ were plesiomorphous to strontium M-type hexaferrite. The thermally stable strontium M-type hexaferrite nanopartieles with sizes less than 100um cotdd take place at 900 ℃ . Up to 1000 ℃ , the phose transformotion to form strontium M-type hexaferrite was ended, the calcinations with the sizes more than 1μm were composed of α-Fe2O3 and strontium M-type hexaferrite. The method of distinguishing γ-Fe2O3 with a spinel structure from Fe2O3 with tetragonal cells by using powder XRD method was proposed. Fe2O3 with tetragonal cells to be crystallized before the crystallization of thermally stable strontium M-type hexaferrite was confirmed for the first time. The reason why α- Fe2O3 as an additional phase appears in the calcinations is the cationic vacancy of stroutium M-type hexaferrite , SrFe12-x□O19 (0≤x ≤0.5).
作者 赵文俞
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第2期36-40,共5页 武汉理工大学学报(材料科学英文版)
基金 FundedbyHitechResearchandDevelopmentProgramofChina(8632001AA339020)andOpenFoundationofStateKeyLaboratoryofAdvancedTechnologyforMaterialsSynthesisandProcessing(No.2003SJ10)
关键词 strontium M-type hexaferrite SrFe12O19 thermal decomposition of low-temperature SrFe12O19 nanoparticles microstructure evolution strontium M-type hexaferrite SrFe12O19 thermal decomposition of low-temperature SrFe12O19 nanoparticles microstructure evolution
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部