期刊文献+

Entire deformational characteristics and strain localization of jointed rock specimen in plane strain compression 被引量:4

Entire deformational characteristics and strain localization of jointed rock specimen in plane strain compression
下载PDF
导出
摘要 Shear band (SB), axial, lateral and volumetric strains as well as Poisson’s ratio of anisotropic jointed rock specimen (JRS) were modeled by Fast Lagrangian Analysis of Continua (FLAC). Failure criterion of rock was a composited Mohr-Coulomb criterion with tension cut-off. An inclined joint was treated as square elements of ideal plastic material beyond the peak strength. Several FISH functions were written to automatically find the addresses of elements in the joint and to calculate the entire deformational characteristics of plane strain JRS. The results show that for moderate joint inclination (JI), strain is only concentrated into the joint governing the behavior of JRS, leading to ideal plastic responses in axial and lateral directions. For higher JI, the post-peak stress-axial and lateral strain curves become steeper as JI increases owing to the increase of new SB’s length. Lateral expansion and precursor to the unstable failure are the most apparent, resulting in the highest Poisson’s ratio and even negative volumetric strain. For lower JI, the entire post-peak deformational characteristics are independent of JI. The lowest lateral expansion occurs, leading to the lowest Poisson’s ratio and positive volumetric strain all along. The present prediction on anisotropic strength in plane strain compression qualitatively agrees with the results in triaxial tests of rocks. The JI calculated by Jaeger’s formula overestimates that related to the minimum strength. Advantages of the present numerical model over the Jaeger’s model are pointed out. Shear band (SB), axial, lateral and volumetric strains as well as Poisson's ratio of anisotropic jointed rock specimen (JRS) were modeled by Fast Lagrangian Analysis of Continua (FLAC). Failure criterion of rock was a composited Mohr-Coulomb criterion with tension cut-off. An inclined joint was treated as square elements of ideal plastic material beyond the peak strength. Several FISH functions were written to automatically find the addresses of elements in the joint and to calculate the entire deformational characteristics of plane strain JRS. The results show that for moderate joint inclination (JI) , strain is only concentrated into the joint governing the behavior of JRS, leading to ideal plastic responses in axial and lateral directions. For higher JI, the post-peak stress-axial and lateral strain curves become steeper as JI increases owing to the increase of new SB's length. Lateral expansion and precursor to the unstable failure are the most apparent, resulting in the highest Poisson's ratio and even negative volumetric strain. For lower JI, the entire post-peak deformational characteristics are independent of JI. The lowest lateral expansion occurs, leading to the lowest Poisson's ratio and positive volumetric strain all along. The present prediction on anisotropic strength in plane strain compression qualitatively agrees with the results in triaxial tests of rocks. The JI calculated by Jaeger's formula overestimates that related to the minimum strength. Advantages of the present numerical model over the Jaeger's model are pointed out.
作者 王学滨
出处 《Journal of Central South University of Technology》 EI 2006年第3期300-306,共7页 中南工业大学学报(英文版)
基金 Project(50309004) supported by the National Natural Science Foundation of China
关键词 岩石试验 轴向应变 侧向应变 容积应变 剪切带 jointed rock stress axial strain lateral strain volumetric strain Poisson's ratio shear band
  • 相关文献

参考文献1

  • 1Wang Xue-bin,Pan Yi-shan.Effect of relative stress on post-peak uniaxial compression fracture energy of concrete[J].Journal of Wuhan University of Technology - Mater Sci Ed.2003(4)

同被引文献34

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部