期刊文献+

光子晶体的微腔特性 被引量:4

Properties of a Photonic Crystal Microcavity
下载PDF
导出
摘要 为了设计一种高品质因子的光子晶体微腔和研究单缺陷光子晶体微腔谐振模波长随晶格常数的变化规律,使用时域有限差分法(differencetime domainmethod)和基于Baker算法的Pad啨近似方法计算了半导体材料上空气孔阵列光子晶体微腔的谐振模波长和品质因子.得到的新型光子晶体微腔的品质因子达246510,单缺陷光子晶体微腔模波长随晶格常数a和孔半径r的近似为线性变化关系:当孔半径r为一常数时,表现为晶格常数改变1nm,谐振波长变化约3nm,为实际制作光子晶体微腔激光器提供了理论指导. In order to design a new type of photonic crystal microcavity with a high quality factor and to study the relationship between the resonant mode wavelength and the lattice constant of a single-defect photonic crystal microcavity, the finite difference time-domain method and the Padé approximation together with Baker's algorithm are employed to calculate the resonant mode wavelength and quality factor of air hole photonic crystal microcavities made of semiconductor material. The quality factor of this photonic crystal microcavity is 246510, and it has a linear relationship such that a change of three nanometers in the resonant mode wavelength results in a change of only one nanometer in the lattice constant of the single defect photonic crystal microcavity for a fixed hole radius. These results crystal microcavity lasers. provide theoretical instruction for fabricating photonic crystal microcavity lasers.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第6期1034-1037,共4页 半导体学报(英文版)
基金 国家自然科学基金(批准号:60377011 60345008) 国家高技术研究发展计划(批准号:2003AA311020)资助项目~~
关键词 光子晶体 微腔 半导体激光器 时域有限差分法 品质因子 photonic crystal microcavities semiconductor lasers difference time-domain method quality factor
  • 相关文献

参考文献10

  • 1Yablonovitch E.Inhibited spontaneous emission in solid-state physics and electronics.Phys Rev Lett,1987,58 (20):2059
  • 2Kosaka H,Kawashima T,Tomita A.Superprism phenomena in photonic crystals.Phys Rev B,1998,58:R10096
  • 3Knight J C,Broeng J,Birks T A,et al.Photonic band gap guidance in optical fibers.Science,1998,282:1476
  • 4Painter O,Lee R K,Scherer A,et al.Two-dimensional photonic crystal band-gap defect mode laser.Science,1999,284:1819
  • 5Song B S,Noda S,Asano T,et al.Ultra-high-Q photonic double-heterostructure nanocavity.Nature Materials,2005,4:207
  • 6Lee Y H,Ryu H Y,Park H K,et al.Low threshold 2-D photonic crystal lasers.LEOS,2002,1:219
  • 7Talove A.Computational electrodynamics:The finite-difference time-domain method.Artech House,1995
  • 8Guo W H,Li W J,Huang Y Z.Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation.IEEE Microwave Wireless Components Lett,2001,11:223
  • 9黄永箴,陈沁,国伟华,于丽娟.Application of Padé Approximation in Simulating Photonic Crystals[J].Journal of Semiconductors,2005,26(7):1281-1286. 被引量:2
  • 10Qiu Min,Zhang Ziyang.High-Q microcavities in 2D photonic crystal slabs studied by FDTD techniques and Padé approximation.Proc of SPIE,2005,5733:366

二级参考文献13

  • 1Taflove A. Computational electrodynamics: the finite-difference time-domain method. Norwood, MA: Artech House,1995.
  • 2Li B J,Liu P L. Numerical analysis of the whispering gallery modes by the finite-difference time-domain method. IEEE J Quantum Electron, 1996,32:1583.
  • 3Hagness S C, Rafizadeh D, Ho S T, et al. FDTD microcavity simulations : design and experimental realization of waveguidecoupled single mode ring and whispering-gallery-mode disk resonators. IEEE J Lightwave Technol, 1997,15: 2154.
  • 4Huang Y Z, Guo W H, Wang Q M. Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator. IEEE J Quantum Electron, 2001,37:100.
  • 5Ochiai T,Sakoda K. Dispersion relation and optical transmittance of a hexagonal photonic crystal slab. Phys Rev B,2001,63:125107.
  • 6Chen Q,Huang Y Z,Guo W H,et al. Modulation of photonic bandgap and localized states by dielectric constant contrast and filling factor in photonic crystals. Chinese Journal of Semiconductors, 2003,24(12): 1233.
  • 7Ko W L, Mittra R. A combination of FDTD and Prony's methods for analyzing microwave integrated circuits. IEEE Trans Microw Theory Tech, 1991,39: 2176.
  • 8Ritter J, Arndt F. Efficient FDTD/matrix-pencil method for the full-wave scattering parameter analysis of waveguiding structures. IEEE Trans Microw Theory Tech, 1996,44:2450.
  • 9Dey S,Mittra R. Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finitedifference time-domain technique and Pade approximation.IEEE Microw Guided Wave Lett, 1998,8: 415.
  • 10Baker G A,Gammel J L. The Pade approximant in theoretical physics. New York : Academic, 1970.

共引文献1

同被引文献19

  • 1方云团,沈廷根,谭锡林.一维光子晶体掺杂缺陷模研究[J].光学学报,2004,24(11):1557-1560. 被引量:95
  • 2周洁,马明,张宇,顾宁.不同尺寸Fe_3O_4磁性颗粒的制备和表征[J].东南大学学报(自然科学版),2005,35(4):615-618. 被引量:40
  • 3韩汝琦改编,黄 昆.固体物理学[M]高等教育出版社,1988.
  • 4Gargini P,Glaze J,Williams O.The SIA’’s National technology roadmap for semiconductors:SIA road map priview. Solid State Technology . 1998
  • 5Yablonovitch E.Photonic band-gap structures. Journal of the Optical Society of America B: Optical Physics . 1993
  • 6韩汝琦改编,黄 昆著.固体物理学[M]. 高等教育出版社, 1988
  • 7Ge J, Hu Y, Yin Y. Highly tunable Superparamagnetic colloidal photoniccrystals[J], Angewandte Chemie International Edition. 2007, 46:7428-7431.
  • 8Ge J, Hu Y, Zhang T, et al. Self-assembly and field-responsive optical diffractions of superparamagnetic colloids[J]. Langmuir, 2008, 24: 3671-3680.
  • 9Ge J, Hu Y, Biasini M, et al.. Superparamagnetic magnetite colloidal nanocrystal Clusters[J], Angewandte Chemie International Edition. 2007.46: 4342-4345.
  • 10Zeng Y, Hao R, Xing B G, et al. One-pot synthesis of Fe304 nanoprisms with controlled electrochemical properties[J]. ChemCommun, 2010, 46: 3920-3922.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部