摘要
本文引入并讨论加权 H^1空间(包括向量值情形与乘积空间情形)的性质,得到其对偶定理,然后利用 H^1(w)的原子结构讨论分数次积分对 H^1(w)的作用,定义了其 Sobolev 型空间,得到了相应于无加权情形的结论.
This paper introduces and discusses the weighted H^1 space,proves its dual theorem and discusses fractional integral on H^1(ω),then obtains its some conclusion corresponding to nonweighted spaces.
关键词
加权H'空间
Sobole空间
向量值空间
weighted H^1 space
product space
vector valued space,Sobolev space
fractional integral operator