期刊文献+

Single-to-Multiple Channel Wavelength Conversions and Tuning of Picosecond Pulses in Quasi-Phase-Matched Waveguides 被引量:1

Single-to-Multiple Channel Wavelength Conversions and Tuning of Picosecond Pulses in Quasi-Phase-Matched Waveguides
下载PDF
导出
摘要 We report the single-to-multiple channel wavelength conversions of 1.57-ps pulses based on cascaded secondharmonic generation and difference frequency generation in quasi-phase-matched periodically poled lithium hiebate waveguides. For single-to-single channel wavelength conversion, no external cavity laser is required with use of a fibre ring laser. The conversion efficiency is about -21.44 dB. The converted idler wavelength can be tuned from 1526.4nm to 1537.5nm as the lasing pump wavelength is varied from 1566.1 nm to 1555.0nm. By employing several input pumps, tunable single-to-dual and single-to-triple channel wavelength conversions are experimentally demonstrated. We report the single-to-multiple channel wavelength conversions of 1.57-ps pulses based on cascaded secondharmonic generation and difference frequency generation in quasi-phase-matched periodically poled lithium hiebate waveguides. For single-to-single channel wavelength conversion, no external cavity laser is required with use of a fibre ring laser. The conversion efficiency is about -21.44 dB. The converted idler wavelength can be tuned from 1526.4nm to 1537.5nm as the lasing pump wavelength is varied from 1566.1 nm to 1555.0nm. By employing several input pumps, tunable single-to-dual and single-to-triple channel wavelength conversions are experimentally demonstrated.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第7期1806-1809,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 60577006.
关键词 CASCADED 2ND-ORDER NONLINEARITY DIFFERENCE-FREQUENCY-GENERATION LITHIUM-NIOBATE CASCADED 2ND-ORDER NONLINEARITY DIFFERENCE-FREQUENCY-GENERATION LITHIUM-NIOBATE
  • 相关文献

参考文献13

  • 1Yoo S J B 1996 J, Lightwave Technol. 14 955
  • 2Xu C Q, Okayama H and Kawahara M 1993 Appl. Phys.Lett. 63 3559
  • 3Chou M H, Hauden J, Arbore M A and Fejer M M 199 8Opt. Lett. 23 1004
  • 4Chen B, Xu C Q, Zhou B, Nihei Y and Harada A 2001 Jpn.J. Appl. Phys. 40 L1370
  • 5Zhou B, Xu C Q and Chen B 2003 J. Opt. Soc. Am. B 20 846
  • 6Chou M H, Brener I, Fejer M M, Chaban E E and Christman S B 1999 IEEE Photon. Technol. Lett. 11 653
  • 7Gallo K and Assanto G 1999 J. Opt. Soc. Am. B 16 741
  • 8Schreiber G, Suche H, Lee Y L, Grundkotter W, Quiring V, Ricken R and Sohler W 2001 Appl. Phys. B 73 501
  • 9Gao S M, Yang C X and Jin G F 2003 Chin. Phys. Lett.20 1272
  • 10Sun J Q, Liu W, Tian J, Kurz J R and Fejer M M 2003 IEEE Photon. Technol. Lett. 15 1743

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部