期刊文献+

锰原子的二步多光子与三步三光子共振电离研究 被引量:2

2+1,1+1 and 1+1+1 Multiphoton Resonant Ionization of Manganese Atom
下载PDF
导出
摘要 激光共振电离技术是痕量分析中的重要手段之一。文章以速率方程理论为基础,对锰原子的激光共振电离过程进行了分析,讨论了电离过程中各级激发光功率密度及激光作用时间对电离效率的影响;提出了根据所要求的电离效率和激光作用时间计算所需要的各激发光或电离激光的功率密度的方法;得到了饱和激发或饱和电离的规律及阈值条件。研究发现,在激光作用时间为10ns时,锰原子饱和电离的激光强度阈值基本都在10^8W·cm^-2的量级,只有“1+1”双色双共振低三个量级;而“1+1”和“1+1+1”饱和激发的激光强度阈值则在10^2~10^3W·cm^-2量级;并且随着激光作用时间的增加,各过程的饱和激发和饱和电离的激光强度阈值将单调减少。 Resonance ionization spectroscopy (RIS) is an important technique for trace analyses. In the present paper, based on the population rate equations, "2+1", "1+1" and "1+1+1" multiphoton resonant ionization processes of Mn atom are studied by computer simulation. The phenomena and the threshold condition of saturated excitation and ionization processes are discussed. The threshold laser intensities for saturated ionization of Mn atom with different RIS schemes are calculated. With the typical Q-switched laser duration of 10 ns, the obtained saturation threshold laser intensity for the ionization steps in all the resonant ionization processes of Mn is about 10^8 W·cm^-2 with the exception of the "1+1" resonant ionization of Mn which is 3 orders of magnitude lower. The obtained threshold laser intensity for the saturated excitation steps is about 10^2-10^3 W·cm^-2 in "1+1" and "1+1+1" ionization processes. It is also shown that the threshold laser intensity required for saturated excitation and ionization processes turns smaller with the laser duration prolonged.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2006年第6期1003-1007,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金(30070728)资助项目
关键词 激光共振电离光谱学(RIS) 锰原子(Mn) 电离效率 饱和电离 激光强度阈值 Resonance ionization speetroscopy(RIS) Manganese atom(Mn) Ionization efficiency Saturated ionization Threshold laser intensity
  • 相关文献

参考文献12

  • 1Payne M G, Hurst G S, et al. Phys. Rev. Lett., 1975, 35(9): 1154.
  • 2Payne M G, Hurst G S, et al. Rev. Mod. Phys. , 1979, 51(4) : 767.
  • 3Fedosseev V N, Fedorov D V, et al. Nuclear Instruments and Methods in Physics Research B, 2003, 204(5):353.
  • 4Sauvage J, Cabaret L, et al.Acta Phys. Pol.B, 1999, 30:1393.
  • 5Becker, Johanna Sabine, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 1998, 53(11): 1475.
  • 6Dimov S S, et al.J. Applied Surface Science, 2003, 203-204(15): 235.
  • 7LUWei DAISong-tao ANRuo-ting etal(卢唯 戴松涛 安若亭 等).光谱学与光谱分析,1999,19(2):129-129.
  • 8LUBing-song FANGMing-xing etal(卢秉嵩 方明星 等).应用激光,1998,18(5):208-208.
  • 9QINHua ZHENGRong-er etal(秦华 郑荣儿 等).青岛海洋大学学报,2003,33(1):129-129.
  • 10LUBing-song SUXiao-bao JIXue-han(卢秉嵩 苏小保 季学韩).光谱学与光谱分析,1994,14(6):35-35.

同被引文献18

  • 1李志明,朱凤蓉,张子斌,任向军,邓虎,翟利华,张利兴.铈原子偶宇称自电离态激光共振电离光谱[J].光谱学与光谱分析,2004,24(12):1494-1498. 被引量:2
  • 2李志明,朱凤蓉,邓虎,任向军,翟利华,王长海,张利兴.激光脉冲延时方案对原子多步共振光致电离的影响[J].原子与分子物理学报,2006,23(2):185-191. 被引量:5
  • 3Nakahara K, Watanabe J, Nakayama K, et al. Laser power balance for multi-step photoionization of degenerate atoms[J]. Journal of Nuclear Science and Technology, 1993, 30(3): 212
  • 4Ackerhalt J R, Shore B W. Rate equations versus Bloch equation in multiphoton ionization [J ]. Phys. Rev. A, 1977, 16(1): 277
  • 5Greenland P T. Laser isotope separation[J ]. Contemporary Physics, 1990, 31- 405
  • 6巴朗诺夫.同位素[M].北京:清华大学出版社,2004
  • 7Lambropoulos P, Lyras A. Phys. Rev. , 1989, A40: 2198.
  • 8Lyras A, Zorman B, Lambropoulos P. Phys. Rev. , 1990, A42: 543.
  • 9Wunderlich R K, Hutcheon J D, Wasserberg G J, et al. Int. J. Mass Spectrom. Ion Processes, 1992, 115: 123.
  • 10Suryanarayana M V, Sank,aft M, Gangadharan S. Int. J. Mass Spectrom. Ion Processes, 1998, 173: 177.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部