期刊文献+

基于数据差异的多变量统计过程控制 被引量:2

Multivariate Statistical Process Control Based on Dissimilarity of Process Data
下载PDF
导出
摘要 研究数据差异(DISSIM)方法在多变量统计过程控制中的应用.为检测过程数据分布变化来监视操作条件变化,并且定量地评价两组数据之间的差异,DISSIM方法定义一种差异指标D.计算D时运用时间窗口,时间窗口对指标D具有平滑作用,与MSPC的统计指标T2或Q相比,D变化平稳.针对多变量自回归过程和TE过程,分别应用MSPC和DISSIM两种方法做仿真试验.仿真结果表明:与MSPC相比,适当选择时间窗口时,DISSIM善于检测过程中小的、缓慢的变化,而且能够检测操作条件的变化,明显改善了监视性能. This paper studies the application of DISSIM method in multivariate statistics process control. In order to detect a change of operating condition by monitoring a distribution of process data and quantitatively evaluate the difference between two data sets, a dissimilarity index is introduced. A time window is used when the index D is computed. The time window has a smoothing effect. Compared with T^2 or Q, the variation of D is smooth. This paper applies MSPC and DISSIM to simulate for multivariate AR process and TE process. Simulations results demonstrate: Compared with MSPC, DISSIM is good at detecting small and slow changes when a time-window size is appropriately selected. In addition, DISSIM can detect a change of operating condition, so it improves the monitoring performance evidently.
作者 郭金玉 何戡
机构地区 沈阳化工学院
出处 《沈阳化工学院学报》 2006年第2期121-123,共3页 Journal of Shenyang Institute of Chemical Technolgy
关键词 主元分析 数据差异 多变量统计过程控制 principal component analysis DISSIM multivariate statistics process control
  • 相关文献

参考文献3

  • 1Kano Manabu,Hasebe Shinji,Hashimoto Iori,et al.Statistical Process Monitoring Based on Dissimilarity of Process Data[J].AIChE,2002,48(6):1231-1240.
  • 2Lin Weilu,Qian Yu,Li Xiuxi.Nonlinear Dynamic Principal Component Analysis for On-line Process Monitoring and Diagnosis[J].Comp.Chem.Engng,2000,24:423-429.
  • 3Ku Wenfu,Storer Robert H,Georgakis Christos.Disturbance Detection and Isolation by Dynamic Principal Component Analysis[J].Chemometrics and Intelligent Laboratory System,1995,30:179-196.

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部