摘要
高斯利用有限体中的元都是二次的这一性质,推证了Legendre符号的二次反比定律(l/p)=(p/l)(-1)ε(l)ε(p).如果乘群Fp*的子集S满足Fp*是S和-S的和,那么S可取为S=1,2,…,p-12的特殊形式.本文利用这一性质把Legendre符号的运算转化成S中元的三角运算,再通过三角引理的具体计算推得高斯二次反比定律,从而给出其另一种证明方法.
Because all elements of the multiplicative group Fp^* are square , Gauss by that has proved the quadratic reciprocity law (l/p)=(p/l)(-1)^ε(l)ε(p). of Legendre' s symbol in the finite field. If S is a subset of F,; such that Fp^* is the disjoint union of S and - S, we can take S={ 1,2,..., (p- 1) /2} . In this paper, the author by using the proposition converted the operation of Legendre' s symbol into trigonometric operation . By the trigonometric lemma, we finally proved the Gauss' quadratic reciprocity law.
出处
《沈阳化工学院学报》
2006年第2期149-150,共2页
Journal of Shenyang Institute of Chemical Technolgy
关键词
LEGENDRE符号
同构
乘群
Legendre' s symbol
homomorphism
multiplicative group