期刊文献+

基于信息测度和支持向量机的图像边缘检测 被引量:4

Application of information measure and support vector machine in image edge detection
下载PDF
导出
摘要 将信息测度和支持向量机结合在一起,提出了一种新的图像边缘检测方法(information measure and support vec-tor machine edge detection method,ISEDM).首先,基于数学测度概念构造一个描述边缘点信息测度的特征矢量,该矢量由邻域一致性测度、方向性信息测度和梯度分布3个特征分量组成,然后运用支持向量机对特征矢量数据集进行训练和分类,实现了对边缘点的检测.实验结果表明,对于含有加性噪声、乘性噪声等图像的边缘检测,ISEDM能够有效地抑制噪声,较多地保留图像边缘的细节信息,边缘图像锐利而清晰. A novel method for image edge detection is presented based on information measurement and Support Vector Machine, which is called ISEDM (Information measure and support vector machine edge detection method). At first, a vector is constructed to fully describe a edge point information measure, which includes neighborhood homogeneity information measure, orientation information measure, and gradient strengths. Secondly, SVM is applied to train and classify the set of feature vectors, so that the edge of the image is detected. The experimental results show that ISEDM can not only effectively reduce the noises of the image, but also can precisely detect the edge-position, and keep the image edges' details well.
出处 《山东大学学报(工学版)》 CAS 2006年第3期95-99,共5页 Journal of Shandong University(Engineering Science)
基金 国防科技重点实验室基金项目(00F53050) 航空科学基金项目(2000JS01.4.1.HK0311)
关键词 边缘检测 信息测度 支持向量机 edge detection information measure support vector machine
  • 相关文献

参考文献10

  • 1CANNY J A. Computational approach to edge detection [J].IEEE Transactions on PAMI, 1986,8(6) :678-698.
  • 2PAL S K, KING R A. On edge detection of x-ray image using fuzzy sets[J]. IEEE Transactions on PAMI, 1983, 5(1):69-77.
  • 3MALLAT S, ZHONG S. Characterization of signals from multiscale edges [J]. IEEE Transactions on PAMI-14, 1992,14(7) :710-132.
  • 4CHAO C H, DHAWAN A P. Edge detection using a hopfield neural network[J]. Optical Engineering, 1994, 33:3739-3747.
  • 5蒋晓悦,赵荣椿.B—样条子波在图像边缘检测中的应用[J].中国体视学与图像分析,2002,7(4):198-201. 被引量:8
  • 6VAPNIK V N. The nature of statistical learning theory [M].New York: Springer-VerLag, 1995.
  • 7CORTES C, VAPNIK V. Support vector networks[J]. Machine Learning, 1995,20:273-297.
  • 8张艳宁,赵荣椿,梁怡.一种有效的大规模数据的分类方法[J].电子学报,2002,30(10):1533-1535. 被引量:7
  • 9BURGES C J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery,1998,2(2) : 955-974.
  • 10边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..

二级参考文献10

  • 1赵松年 熊小芸.子波变换与子波分析[M].北京:电子工业出版社,1997..
  • 2Cortes C,Vapnik V.Support vector networks [J].Machine Learning,1995,20:273-297.
  • 3Scholkopf B,Sung K,Burges C,Girosi F,Niyogi P,Pogio T,Vapnik V.Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers [R].A.I.Memo1559,MIT, 1996.
  • 4Grabisch M,Nicolas J M.Classification by fuzzy integral:performance and tests [J].Fuzzy Sets and Systems,1994,65:255-271.
  • 5Vapnik V N.The Nature of Statistical Learning Theory [M].NY:Springer-VerLag,1995.
  • 6Kohonen T.Self-organizing Maps [M].NY:Springer-Verlag,1995.
  • 7Stephane Mallat and Sifen Zhong, ″Characterization of Signal from Multiscale Edges″, IEEE tran. Pattern Analysis and Machine Intelligence[J], Vol. 14, No.7,1992,pp 710-732
  • 8解梅,马争,顾德仁.小波变换在有噪图像边缘检测中的应用[J].系统工程与电子技术,2000,22(1):25-27. 被引量:22
  • 9Keita Alpha,彭嘉雄.小波多尺度方法用于边缘检测[J].华中科技大学学报(自然科学版),2001,29(5):74-76. 被引量:5
  • 10刘曙光,刘明远,何钺.基于Canny准则的基数B样条小波边缘检测[J].信号处理,2001,17(5):418-423. 被引量:12

共引文献70

同被引文献27

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部