期刊文献+

基于微制造的多晶硅薄膜型柔性铰链 被引量:2

POLYSILICON THIN FTLM FLEXURE HINGE FABRICATED USING SURFACE MICROMACHINING TECHNOLOGY
下载PDF
导出
摘要 将宏机械柔性铰链设计思想应用到硅微机械机构设计中,采用表面硅牺牲层工艺制作了结构层厚度为2 μm 的多晶硅薄膜型微机械柔性铰链及在线测试机构,对微米尺度柔性铰链的微机械性能进行了理论和试验研究。以直圆型多晶硅薄膜柔性铰链为例,对其转动刚度采用现有宏机械柔性铰链理论的计算值为8 N·μm/rad,试验测试结果为120N·μm/rad。宏理论计算和微机械测试结果之间的偏差较大,这表明在微尺度效应的影响下,宏机械柔性铰链理论模型不能直接用于薄膜型硅微机械柔性铰链的计算。根据试验数据对宏机械柔性铰链计算公式进行了修正,得到了描述薄膜型硅微机械柔性铰链静态特性的近似经验公式,可满足薄膜型硅微机械柔性铰链的设计与计算。 The structural style of steel flexure hinge is applied to design of silicon micromachining structures. Polysilicon thin film flexure hinges and the on line testing device are fabricated using surface micromachining process, and the thickness of structure layer is 2μm. Character of polysilicon thin film flexure hinge is researched and tested. Take right circular polysilicon thin film flexure hinge as an example, the rotational stiffness calculated using the macro theory is 8 N-μm/rad and the tested result is 120 N·μm/rad. Through theory analysis and measurements, it is found that the macroscopic machine model of flexure hinge could not be applied for the design of micromachining thin film flexure hinge properly because of the size-effect. According to experimental data, the formula used in macroscopic machine is modified to meet the design and calculation of micromachining thin film flexure hinge.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2006年第6期193-198,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(50135054) 上海市科技发展基金(0111nm020)资助项目。
关键词 微制造 多晶硅 薄膜 柔性铰链 直圆柔性铰链 微机电系统 Micromachine Polysilicon Thin film Flexure hinge Right circular hinge MEMS
  • 相关文献

参考文献8

二级参考文献25

  • 1李路明,王立鼎.SMA微夹钳的研究[J].光学精密工程,1997,5(2):37-42. 被引量:7
  • 2匡一宁 黄庆安.横向热致动微执行器的热流模型及模拟[A]..STC′99[C].,1999.78-81.
  • 3[1]Paros J M,Weisboro L. How to design flexure hinges[J]. Machine Design, 1965, November 37(27): 151 ~ 157.
  • 4[2]Ryu J W, Gweon D, Moon K S. Optimal design of a flexure hinge based XYθ wafer stage[J ]. Precision Engineering, 1997,21:18~28.
  • 5[4]Yang R, Jouaneh M, Schweizer R. Design and characterization of a low-profile micropositioning stage [J]. Precision Engineering, 1996,18:20 ~29.
  • 6[5]SUYAMA R,TANEMOTOK,KOBAYASHI Y,et al. Autofocus ing System of Optical Microscope Utilizing Electrostrictive Actua tors[J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 1991,30(6): 1290~ 1294
  • 7[1]Keller C G,Howe R T. Nickel-filled Hexsil Thermally Actuated Tweezers. The 8th International Conference on S olid-State Sensors and Actuators,and Europe Ⅸ, Stockholm, Sweden, 1995
  • 8[2]Chen L Y, Zhang Z L, Yao J J, et al. Selective Chemical Vapor Deposition of Tungsten for Microdynamic Systems. Proc. IEEE Micro Electro Mechanical Systems Workshop, Salt Lake City, USA,1989
  • 9[4]Kim C-J, Pisano A P, Muller R S, et al. Polysilicon Microgripper. Solid-State Sensor and Actuator Workshop, Hilton Head Island, USA, 1990
  • 10[5]Kim C-J, Pisano A P, Muller R S. Overhung Electrostatic Microgripper. Conference on SolidState Sensors and Actuators, Srancisco, USA,1991

共引文献104

同被引文献123

  • 1褚金奎,郝秀春,王立鼎.电热驱动镍微夹钳的设计及制作[J].机械工程学报,2007,43(5):116-121. 被引量:9
  • 2Chen S, Culpepper M L. Design of contoured microscalethermomechanical actuators [J]. Journal of Microelectromechanical Systems. 2006, 15(5): 1226-1234.
  • 3Kwan A M H, Song S, Lu X, et al. Improved designs foran electrothermal in-plane microactuator [J]. Journal ofMicroelectromechanical Systems. 2012, 21(3): 586-595.
  • 4Shen X, Chen X. Mechanical performance of a cascadedV-shaped electrothermal actuator[J]. International Journalof Advanced Robotic Systems. 2013, 10(379): 1-8.
  • 5Wang Z L, Shen X J, Zhou L, et al. Vibration characteristic analysis of V-shaped electrothermal microactuator[J]. Key Engineering Materials. 2012, 503: 118-121.
  • 6Zhang Y Y, Shen X J, Chen X Y. Model of polysiliconelectro-thermal micro actuator and re search of microscale effect[J]. Journal of Wuhan University of Technology-Materials Science. 2004, 19(S1): 59-62.
  • 7Huang Q A, Lee N K S. Analysis and design of polysilicon thermal flexure actuator[J]. Journal of Micromechanics and Microengineering. 1999, 9(1): 64-70.
  • 8Hickey R, Kujath M, Hubbard T. Heat transfer analysisand optimization of two -beam microelectromechanicalthermal actuators[J]. Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films. 2002, 20(3): 971-974.
  • 9Chen R S, Kung C, Lee G. Analysis of the optimal dimension on the electrothermal microactuator [J]. Journalof Micromechanics and Microengineering. 2002, 12(3):291-296.
  • 10Lee C C, Hsu W. Optimization of an electro-thermallyand laterally driven microactuator[J]. Microsystem Technologies. 2003, 9(5): 331-334.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部