期刊文献+

Orlicz空间及其上的复合算子

Weighted composition operators in Orlicz spaces
下载PDF
导出
摘要 讨论O rlicz空间上的复合算子C(其中∶X→X是非奇异变换)以及当u∈L∞时加权复合算子MuC的有界性、可逆性等问题,给出了一些等价刻划,同时讨论了O rlicz序列空间中的复合算子是等距算子的条件. In this paper, some properties of composition operator Cτ and weighted composition operator MuCτ in Orlicz spaces are discussed (let τ be a nonsingular transform, u∈L^∞ ). We give some necessary and sufficient conditions about boundedness, invertibility of these operators, and also discuss metric-preserving property of Cτ in Orlicz sequence spaces.
作者 路群 曹广福
出处 《广州大学学报(自然科学版)》 CAS 2006年第3期12-14,共3页 Journal of Guangzhou University:Natural Science Edition
关键词 非奇异变换 ORLICZ空间 加权复合算子 复合算子 nonsingular transform Orlicz space weighted composition operator composition operator
  • 相关文献

参考文献8

  • 1R K Singh. Invertible composition operators on L^2 (A) [J]. Proc Amer Math Soc, 1976,56: 127-129.
  • 2R K Singh, R D C Kumar. Compact weighted composition operators on L^2(A) [J]. Acta Sci Math (Szeged), 1985,49:339-344.
  • 3R K Singh, B S Komal. Composition operator on F and its adjiont[J]. Proc Amer Math Soc, 1978,70:21-25.
  • 4R K Singh, A Kumar. Characterization of invertible, unitary and normal composition operators [J]. Bull Austral Math Soc,1978,19:81-95.
  • 5徐宪民.L—p(X,A,μ)上的紧复合算子[J].数学进展,1991,20:221-221.
  • 6CUI Yun-an, H Hudzik, R Kumar,et al. Composition operators in Orlicz spaces[J]. J Aust Math Soc,2004,76:189-206.
  • 7R Kumar. Composition operators on Odicz spaces [J]. Integral Equations Operator Theory, 1997,29: 17-22.
  • 8CHEN Shu-tao. Geometry of Odicz spaces[M]. Warszawa, Poland, Dissertationes Mathematicae, 1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部