期刊文献+

一种新的变步长LMS自适应滤波算法 被引量:126

A New Variable Step Size LMS Adaptive Filtering Algorithm
下载PDF
导出
摘要 本文通过建立步长因子μ与误差信号之间的非线性函数关系,提出了一种新的变步长LMS(LeastMean Square)算法.该算法具有初始阶段和未知系统时变阶段步长自动增大而稳态时步长很小的特点,且克服了S函数变步长LMS算法(简称SVSLMS算法)在自适应稳态阶段μ(n)取值偏大的缺陷.理论分析和计算机仿真结果表明该算法的性能优于SVSLMS算法. By building a nonlinear function relationship between μ and the error signal,this paper presents a novel variable step size LMS( Least Mean Square) adaptive filtering algorithm. The step size of this algorithm increases automaticly at the beginning of this algorithm or when unknown system is changing with time, and it would be smaller during the steady state. This algorithm avoid the shortage of changing step size of SVSLMS, variable step size LMS based on Sigmoid function, in the process of the adaptive steady state. The performance of this paper algorithm is better than that of SVSLMS with the theoretical analysis and computer simulations.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第6期1123-1126,共4页 Acta Electronica Sinica
关键词 自适应滤波 变步长 最小均方算法 adaptive filtering variable step size least mean square algorithm
  • 相关文献

参考文献14

  • 1WIDROW B,MCCOOL J M,LARMORE M G,JOHNSON C R.Stationary and nonstationary learning characteristics of the LMS adaptive filter[ J].Proc IEEE,1976,64 (8):1947-1951.
  • 2GELFAND S B,WEI Y KROGMEIER J V.The stability of variable step-size LMS algorithms[ J].IEEE Trans on Signal Processing,1999,47 (12):3277-3288.
  • 3ABOULNASR T MYAS K.A robust variable step-size lms-type algorithmt:Analysis and simulations[ J].IEEE Trans on Signal Processing,1997,45 (3):631-639.
  • 4MARCOS S,MACCHI O.Trasking capability of the least mean square algorithm:Application to an asynchronous echo canceller[ J ].IEEE Trans on Acoust,Speech,Signal Processing,1987,ASSP-35 (11) f:1570-1578.
  • 5GUO L,LJUNG L,WANG G G J.Necessary and sufficient conditions for stability of LMS[ J ].IEEE Trans on Automatic Control,1997,42 (6):761-770.
  • 6Harris R W,Chabries D M,bishop F A.A variable step (VS) adaptive filter algorithm[ J ].IEEE Trans on Acoustics,Speech and Signal Proc,1986,ASSP-34 (4):309 -316.
  • 7R H Kwong,E w Johnston.A variable step size LMS algorithm[ J ].IEEE Trans Signal processing,1992,40 (7):1633-1642.
  • 8V J Mathews,Z Xie.A stochastic gradient adaptive filter with gradient adaptive step size[ J ].IEEE Trans Signal Processing,1993,41 (7):2075-2087.
  • 9T J Shan,T Kailaith.Aaptive algorithm with an automatic gain control feature[ J ].IEEE Trans.Acoust,Signal processing,1991,35 (1):122-127.
  • 10Yasukawa H,Shimada S,Furukrawa I,et al.Acoustic Echo Canceller with High Speech Quality[A].ICASSP'87,2125 -2128.

二级参考文献9

  • 1叶华,吴伯修.变步长自适应滤波算法的研究[J].电子学报,1990,18(4):63-70. 被引量:73
  • 2GUO L, LJUNG L, WANG G J. Necessary and sufficient conditions for stability of LMS[J]. IEEE Trans on Automatic Control, 1997, 42(6):761-770.
  • 3KWONG R, JOHNSTON E W. A variable step size LMS algorithm[J]. IEEE Trans on Signal Processing, 1992, 40(7):1633-1642.
  • 4HARRIS R, CHABRIES D, BISHOP F A. A variable step (VS) adaptive filter algorithm[J]. IEEE Trans on Acoust, Speech, Signal Processing, 1986,ASSP-34(2):309-316.
  • 5EVANS J, XUE P, LIU B. Analysis and implementation of variable step size adaptive algorithms[J]. IEEE Trans on Signal Processing, 1993, 41(8):2517-2534
  • 6MARCOS S, MACCHI O. Tracking capability of the least mean square algorithm: application to an asynchronous echo canceller[J]. IEEE Trans on Acoust, Speech, Signal Processing, 1987,ASSP-35(11):1570-1578.
  • 7WIDROW B, MCCOOL J M, LARIMORE M G, et al. Stationary and nonstationary learming characteristics of the LMS adaptive filter[J]. Proc IEEE, 1976, 64(8):1151-1162.
  • 8GELFAND S B, WEI Y, KROGMEIER J V. The stability of variable step-size LMS algorithms[J]. IEEE Trans on Signal Processing, 1999, 47(12):3277-3288.
  • 9ABOULNASR T, MAYYAS K. A robust variable step-size lms-type algorithm: Analysis and simulations[J]. IEEE Trans on Signal Processing, 1997, 45(3): 631-639.

共引文献333

同被引文献874

引证文献126

二级引证文献569

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部