期刊文献+

关于Schur数的两个不等式

Two Inequalities on Schur Numbers
下载PDF
导出
摘要 对每个整数k≥1,仅有有限个整数n满足:存在整数集合[1,n]上的一种k着色,使x+y=z的单色解在[1,n]内不存在.这些数最大的叫作Schur数,记为S(k).如果把条件加强为数组(x,y,z)中各数互不相同,满足条件的数S*(k)称为强Schur数.本文给出了关于这两种Schur数的两个不等式,并且给出了强Schur数的新下界. For every integer k ≥ 1, one only can find finite integers such that: there exists a k-coloring of the set [ 1, n ] such that there isn' t any monochromatic solution to in [ 1, n ] x + y = z. The maximum integers satisfying such condition are called Schur numbers and denoted by S (k). If we restrict to triplets ( x, y, z) of pairwise distinct integers, the integers S ^* (k) called strong Schur numbers. The purpose of this paper is to give two inequalities on two kinds of Schur numbers and we also obtain a new lower bound of S ^* ( k ) by the inequalities.
作者 郭嵩
出处 《淮阴师范学院学报(自然科学版)》 CAS 2006年第2期99-101,共3页 Journal of Huaiyin Teachers College;Natural Science Edition
基金 江苏省教育厅自然科学基金资助项目(04KJD110032)
关键词 Schur数 k着色 单色解 Schur numbers k-coloring monochromatic solution
  • 相关文献

参考文献13

  • 1[1]Schur.Uneber die Kongruenz xm+ym≡zm(mod p)[J].jahresber Deutsch Math Verein,1916,25:114-117.
  • 2[2]Bialostocki A,Erdos P and Lefmann H.Monochromatic and zero-sum sets of nondecreasing diameter[J].Discrete Math,1995,137;19-34.
  • 3[3]Guy R K.Unsolved Problems in Number Theory[M].3rd ed.New York:Springer-Verlag,2004:323-328.
  • 4[4]Fredricksent H.Schur numbers and the Ramsey Numbers N(3,3,...,3;2)[J].J Comb Theory A,1979,27:371-379.
  • 5[5]Fredricksent H.Five sum-free sets[J].Proc 6th SE Conf Graph Theory,Combin.&Comput,Congressus Numerantium 14 Utilitas Math,1975:309-314.
  • 6[6]Radziszowski S P.Small Ramsey Numbers[J].Electr J Comb,1984,1:35-40.
  • 7[7]Abbott H L,Hanson D.A problem of Schur and its generalizations[J].Acta Arith,1972,20:175-187.
  • 8[8]Fredricksen H,Sweet M M.Symmetric Sum-Free Partitions and Lower Bounds for Schur Numbers[EB/OL].Electr J Comb,2000,7.http://www.combinatorics.org/Volume-7/PDF/V7ilr32.pdf.
  • 9[9]Chung F R,On the Ramsey numbers N(3,3,...,3;2)[J],Discrete Math,1973,5:317-321.
  • 10[10]Irving R W.An extersion of Schur's theorem on sum-free partitions[J].Acta Arith,1973,25:55-63.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部