摘要
对每个整数k≥1,仅有有限个整数n满足:存在整数集合[1,n]上的一种k着色,使x+y=z的单色解在[1,n]内不存在.这些数最大的叫作Schur数,记为S(k).如果把条件加强为数组(x,y,z)中各数互不相同,满足条件的数S*(k)称为强Schur数.本文给出了关于这两种Schur数的两个不等式,并且给出了强Schur数的新下界.
For every integer k ≥ 1, one only can find finite integers such that: there exists a k-coloring of the set [ 1, n ] such that there isn' t any monochromatic solution to in [ 1, n ] x + y = z. The maximum integers satisfying such condition are called Schur numbers and denoted by S (k). If we restrict to triplets ( x, y, z) of pairwise distinct integers, the integers S ^* (k) called strong Schur numbers. The purpose of this paper is to give two inequalities on two kinds of Schur numbers and we also obtain a new lower bound of S ^* ( k ) by the inequalities.
出处
《淮阴师范学院学报(自然科学版)》
CAS
2006年第2期99-101,共3页
Journal of Huaiyin Teachers College;Natural Science Edition
基金
江苏省教育厅自然科学基金资助项目(04KJD110032)
关键词
Schur数
k着色
单色解
Schur numbers
k-coloring
monochromatic solution