期刊文献+

非对称排斥过程中的稳态性质

Steady-state Properties in the Asymmetric Exclusion Process
下载PDF
导出
摘要 通过数值模拟研究了ASEP模型的稳态性质,主要考察了当注入概率α和输出概率β变化时系统稳态密度和流量表现出的相变性质.研究发现,同以往TASEP模型的结果相比较,ASEP模型中系统的稳态密度具有相似的性质,然而其稳态流量表现出非常显著的新特性.首先,在TASEP模型中一个很大参数范围内存在的极大流量区在ASEP模型中退化为一个临界值,系统的极大流量仅仅当注入概率α等于某一临界值cα时才出现.此外,研究发现ASEP模型中存在着一个TASEP模型不具备的流量随注入概率α的增加而递减的流量减小区. We study the steady-state properties of the ASEP model by means of numerical simulations, focusing on the phase diagram of density and current of the system under the steady-state when the injection probability α and the extraction probability β are varied. It is found that, the steady-state density property of ASEP model is similar to that of the previously studied TASEP model, while its steady-state current exhibits some novel properties. Firstly, the nontrivial maximal current phase in the TASEP model degenerates into a critical one, and the maximal current of the system can be obtained only when the injection probability α equals to a critical value αc. Moreover, it is found that, in the ASEP model, there exists a new phase in which current is decreased with the increase of α, which is absent from the previous results obtained in the TASEP model.
出处 《淮阴师范学院学报(自然科学版)》 CAS 2006年第2期113-116,120,共5页 Journal of Huaiyin Teachers College;Natural Science Edition
基金 湖南省自然科学基金资助项目(03JJY6015)
关键词 非平衡系统 相变 ASEP模型 流量 non-equilibrium system phase transition ASEP model current
  • 相关文献

参考文献19

  • 1[1]Evans M R.Asymmetric exclusion model with two species:Spontaneous symmetry breaking[J].J Sta Phys,1995,80(2):69-102.
  • 2[2]Krug J.Boundary induced phase transition in driven diffusive systems[J].Phys Rev Lett,1991,67(14):1882-1885.
  • 3[3]Janowsky S A,Lebowitz J L.Finite size effects and shock fluctuations in an asymmetric simple exclusion process[J].Phys Rev A,1992,45(2):618-625.
  • 4[4]Kolomeisky A B.Asymmetric simple exclusion model with local inhomogeneity[J].J Phys A:Math Gen,1998,31(4):1153-1164.
  • 5[5]Mallick K.Shocks in the asymmetry exclusion model with an impurity[J].J Phys A:Math Gen,1996,29(17):5375-5386.
  • 6[6]Lee H W,Popkov V,Kim D.Two way traffic flow:Exactly solvable model of traffic jam[J].J Phys A:Math Gen,1997,30(24):8497-8513.
  • 7[7]Schutz G M.Time-dependent correlation functions in a one-dimensional asymmetric exclusion process[J].Phys Rev E,1993,47(6):4265-4277.
  • 8[8]Nagel K,Schreckenberg M.A cellular automaton model for freeway traffic[J].J Phys I France,1992,2(12):2221-2229.
  • 9[9]Schreckenberg M.Discrete stochastic models for traffic flow[J].Phys Rev E,1995,51(4):2939-2949.
  • 10[10]Schreckenberg M,Wolf D E.Proceedings of the workshop on Traffic and granular flow 97[M].Singapore:Springer,1998:301-318.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部