期刊文献+

应用人工神经网络预报电站锅炉的机械不完全燃烧热损失 被引量:1

To Predict Mechanical Incomplete Combustion Heat Loss in Power Plant Boilers with Artificial Neural Network
下载PDF
导出
摘要 电站锅炉的热效率是衡量燃煤锅炉和发电机组运行经济性的重要指标,机械不完全燃烧热损失q4是影响锅炉运行热效率的最主要因素之一.要对锅炉热效率进行实时在线监测,必须准确地预报出q4的值.应用BP神经网络,使用MATLAB语言编写程序,对q4进行预报.经实验测得,q4预报值与真实值之间的相对误差在±1.65%之内. Thermal efficiency in boilers' operation is an important index for evaluating economy of coal-fired boilers and generator units. It is heavily affected by mechanical incomplete combustion heat loss (q4)- Real-time and on-line boiler thermal efficiency monitoring depends on precise predicting data of q4. This paper adopts BP NN, and programs with MATLAB language to predict q4. The result of experiment indicates that the relative error between measured data and predicting data is within ± 1.65%.
作者 李怡 郑谓建
出处 《哈尔滨理工大学学报》 CAS 2006年第3期89-91,98,共4页 Journal of Harbin University of Science and Technology
关键词 电站锅炉 热效率 机械不完全燃烧热损失 BP神经网络 power plant boiler thermal efficiency mechanical incomplete combustion heat loss BP NN
  • 相关文献

参考文献6

  • 1锅炉机组热力计算标准方法编写组.锅炉机组热力计算标准方法[M].北京:机械工业出版社,1976.
  • 2AZIMI M R. Fast Learning Process of Multilayer NN Using RLS Methods [ J]. IEEE, Trans. Signal Processing, 1992,23:40 -48.
  • 3WIDROW B. Networks, Application in Industry, Business and Science [ J ]. Communication of the ACM, 1994, 37:93 -105.
  • 4HAYKIN S. Neural Networks, A Comprehensive Foundation [ M ]. New York:Macmillan College Publishing Company, 1994.
  • 5师建斌,严道一.锅炉燃烧优化指导系统在火电厂的应用[M].北京:中国电力出版社,1997.
  • 6张宜华.精通MATLAB5[M].北京:清华大学出版社,1999..

共引文献79

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部