期刊文献+

逆奇异值问题的相对广义牛顿法(英文)

A Relative Generalized Newton Method for Solving the Inverse Singular Value Problem
下载PDF
导出
摘要 本文用另一方法证明了非对称矩阵的奇异值是处处强半光滑的,并利用这一性质给出求解逆奇异值问题的相对广义牛顿法,该方法具有Q-二阶收敛速度. This paper gives an alternative proof that the singular value functions of a nonsymmetric matrix are strongly semismooth everywhere. Based on this property, a relative generalized Newton method is given to solve the inverse singular value problem,which is Q- quadratically convergent.
出处 《应用数学》 CSCD 北大核心 2006年第3期595-599,共5页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China (69972036)
关键词 逆奇异值问题 相对广义牛顿法 Q-二阶收敛 The inverse singular value problem A relative generalized Newton method Q- quadratic convergence
  • 相关文献

参考文献10

  • 1Sun Defeng,Sun Jie. Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems[J]. SIAM Journal on Numerical Analysis,2003,40(6):2352-2367.
  • 2Sun Defeng,Sun Jie. Strong semismoothness of Fisher-Burmeister SDC and SOC complementarity functions[J]. Mathematical Programming,2005,103(3):575-581.
  • 3Golub G H, Van Loan C F. Matrix Computations[M]. Baltimore, USA: The Jonhs Hopkins University Press, 1996.
  • 4Potra F, Qi L, Sun D. Secant methods for semismooth equations[J]. Numerische Mathematik, 1998,80(2) :305-324.
  • 5Friedland S, Nocedal J,Overton M L. The formulation and analysis of numerical methods for inverse eigenvalue problems[J]. SIAM Journal on Numerical Analysis,1987,24(3):634-667.
  • 6Stewart G W, Sun J G. Matrix Perturbation Theory[M]. New York: Academic Press, 1990.
  • 7Sun Defeng,Sun Jie. Semismooth matrix valued functions[J]. Mathematics of Operations Research,2002,27(1):150-169.
  • 8Clarke F. Optimization and Nonsmooth Analysis[M]. New York:John Wiley and Sons. 1983.
  • 9Mifflin R. Semismooth and semiconvex functions in constrained optimization[J]. SIAM Journal on Control and Optimization, 1977,15 (6):957-972.
  • 10Fischer A. Solution of monotone complementarity problems with locally lipschitzian functions[J].Mathematical Programming,1997,76(3) :513-532.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部