期刊文献+

微分算子扰动问题的值域研究(英文)

On the Range of the Second-Order Differential Operator with Bounded Perturbations
下载PDF
导出
摘要 本文研究作用在C2周期函数空间上的微分算子u→u″+g(u) ,其中g(u)为连续有界函数.我们将证明上述微分算子的值域限制在周期函数空间的“超曲面”中. In this paper we will study the differential operator u → u ″+ g (u) which acts on the space of C2 periodic functions , where g (u) is a continuous bounded function which is complementary to the Landesman-Lazer case . It will be proved that the range of the differential operator above is a "twisted" strip in the space of periodic functions.
作者 孟钢 章梅荣
出处 《应用数学》 CSCD 北大核心 2006年第3期613-620,共8页 Mathematica Applicata
基金 Supported by the NNSFC (10325102) TRAPOYT-M.O.E.(2001) and the National 973Project (G1999075108) of China
关键词 值域 微分算子 周期解 上下解方法 Range Differential operator Periodic solution Alternative method Upper-lower solution method
  • 相关文献

参考文献7

  • 1De Coster C, Habets P. Upper and lower solutions in the theory of ODE boundary value problems: classical and reeent results[A]. Zanolin F. Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations[C]. New York:Springer-verlag, 1996.
  • 2Fabry C, Mawhin J,Nkashama M N. A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equation[J]. Bull. London Math. Soc. , 1986,18: 173-180.
  • 3Habets P, Sanchez L. Periodic solutions of some Lienard equations with singularities[J]. Proc. Amer.Math. Soc. ,1990,109:1035-1044.
  • 4Lazer A C. On schauder's fixed point theorem and forced second-order nonlinear oscillations[J]. J. Math.Anal. Appl, 1968,21:421-425.
  • 5Mawhin J. Global results for the forced pendulum equation[A]. Canada A, Drabek P, Fonda A. Handbook of Ordinary Differential Equations-ordinary Differential Equations[C]. NorthHolland, Amsterdam:Elsevier, 2004.
  • 6Ortega R,Zhang M. Optimal bounds for bifurcation values of a superlinear periodic problem[J]. Proc.Roy. Soc. Edinburgh Sect. 2005,135(A) : 119-132.
  • 7Ruiz D,Ward J R. Some notes on periodic systems with linear part at resonance[J]. Discrete Cont. Dynam. Syst. ,2004,11:337-350.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部