期刊文献+

基于粒子群优化算法的相干信源波达方向估计 被引量:5

Estimating direction-of-arrival of coherent source based on particle swarm optimization algorithm
下载PDF
导出
摘要 利用粒子群优化算法和在解决优化问题的优势和广义极大似然测向的优点,提出了一种估计相干信源波达方向的新方法.对于所提出的测向算法,人射的信源可以是独立信源,也可以是多相干信源的混合,对阵列的几何结构也没有任何约束,而且它分辨的信源数还可以大于阵元数.为了有效地对所提出的测向代价函数进行拟合,把高斯异策略引进粒子群算法中,提出了一种可快速多维搜索的随机变异粒子群算法.仿真结果表明:与基于遗传算法的相干信源波达方向估计方法相比,基于粒子群优化算法的波达方向估计在收敛速度和估计精度上都有优势,有很好的可行性和有效性. Using a particle swarm optimization algorithm and generalized maximum likelihood algorithm, a novel method to estimate direction-of-arrival (DOA) of a coherent source is proposed. For the proposed algorithm, incident sources may be a mixture of multi-clusters of coherent sources, the array's geometry is unrestricted, and more importantly, the number of sources resolved can be larger than the number of sensors. In order to realize precise fitting of the cost function, the mechanism of Gaussian mutation was considered in an original particle swarm optimization algorithm, and a modified particle swarm optimization algorithm for DOA was proposed. Simulation results show that DOA estimation of coherent sources based on a particle swarm optimization algorithm performs better than a genetic algorithm in aspects of convergence and estimation precision, and its efficacy and feasibility are proved by computer simulation.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第3期453-456,共4页 Journal of Harbin Engineering University
关键词 波达方向估计 最大似然估计 粒子群优化算法 全局优化 direction of arrival (DOA) estimation maximum likelihood estimation particle swarm optimization global optimization
  • 相关文献

参考文献8

  • 1SCHMIDT R O. Multiple emitter location and signal parameter estimations [J]. IEEE Trans on AP, 1986, 34 (3):276-280.
  • 2KUMARESAN R, TUFTS D W. Estimating the angle of multiple plane waves[J]. IEEE Trans on AES, 1983, 19(1):134-139.
  • 3BRESLER Y, MACOVSKI A. Exact maximum likelihood parameter estimation of superimposed exponential signals[J]. IEEE Trans on ASSP, 1986, 34(5):1081- 1089.
  • 4VIBERG M, OTTERSTEN B, KAILATH T. Detection and estimation in sensor arrays using weighted subspace fitting[J]. IEEE Trans on SP, 1991,39 (11): 2436-2449.
  • 5王布宏,王永良,陈辉.相干信源波达方向估计的广义最大似然算法[J].电子与信息学报,2004,26(2):225-232. 被引量:11
  • 6KENNEY J, EBERHART R C. Particle swarm optimization[A]. Proc IEEE international conference on Neural Networks[C]. Perth,USA, 1995.
  • 7EBERHARTR C, SHI Y. Particle swarm optimization developments, applications and resources[A]. Proceedings of the IEEE congress on evolutionary computation[C]. Piscataway, USA, 2001.
  • 8吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:453

二级参考文献11

  • 1王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 2[1]Schmidt R O. Multiple emitter location and signal parameter estimations [J]. IEEE Trans. on AP, 1986, AP-34(3): 276-280.
  • 3[2]Kumaresan R, Tufts D W. Estimating the angle of arrival of multiple plane waves [J]. IEEE Trans. on AES, 1983, AES-19(1): 134-139.
  • 4[3]Roy R, Kailat T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J].IEEE Trans. on ASSP, 1989, ASSP-37(7): 984-995.
  • 5[4]Shan T J, Wax M, Kailath T. On spatial smoothing for direction-of-arrival estimation of coherent signals [J]. IEEE Trans. on ASSP, 1985, ASSP-33(4): 806-811.
  • 6[5]Bresler Y, Macovski A. Exact maximum likelihood parameter estimation of superimposed exponential signals in noise [J]. IEEE Trans. on ASSP, 1986, ASSP-34(5): 1081-1089.
  • 7[6]Viberg M, Ottersten B, Kailath T. Detection and estimation in sensor arrays using weighted subspace fitting [J]. IEEE 7rans. on SP, 1991, SP-39(11): 2436-2449.
  • 8[7]Shan T J, Paulray A, Kailath T. On smoothed rank profile tests in eigenstructure methods for directions-of-arrival estimation [J]. IEEE Trans. on. ASSP, 1987, ASSP-35(10): 1377-1385.
  • 9[8]Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound [J]. IEEE Trars. on ASSP, 1989, ASSP-37(5): 720-741.
  • 10[9]Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons [J]. IEEE Trans. on ASSP, 1990, ASSP-38(12): 2140-2150.

共引文献460

同被引文献33

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部