摘要
设K为一个体,K^(m×n)为K上m×n矩阵的集合.文中利用初等变换和广义逆刻画了体K上秩等方程rankA XY Z=rankA的几种情形解的存在性及其形式.
If K is supposed as any skew field and K^(m×n)denotes m×n matrices over K,the existence and expressions of solutions for a class of equations of equirank can be portrayed as rank〔A X Y Z〕=rank A in some cases.
作者
王锋
WANG Feng(College of Science,Harbin Engineering University,Harbin 150001,China)
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2006年第3期474-476,共3页
Journal of Harbin Engineering University
关键词
秩等
体
矩阵的{1}逆
equirank
skew field
{1}inverse of matrix