摘要
多元函数的积分由于积分域的复杂性,使得某些积分化为牛顿-莱布尼兹公式计算时非常的复杂,甚至积分顺序选择不恰当时,此积分算不出结果。为了解决这些问题,本文将针对多元函数的某些对称定义域结合函数的性质再利用牛顿-莱布尼兹公式计算,这将很大程度上简化多元函数的积分计算。
When the integral region is complex, it is very difficult to compute integration of function of several variables by Newton - Leibniz formula only. If integral order isn't proper,the result was not attained. In order to resolve this problem, a computing method on the region's symmetry and nature of the function is posed. This will make the computing of integration very easy.
出处
《山东农业大学学报(自然科学版)》
CSCD
北大核心
2006年第2期284-286,共3页
Journal of Shandong Agricultural University:Natural Science Edition
关键词
多维区域
对秒区域
曲线积分
曲面积分
Funciton with odevity, Multidimensional region, Symmetric region, Surface intergral