期刊文献+

凸域上温度分布的无理函数插值近似方法 被引量:3

Irrational function interpolation and temperature distributions approximation within convex domains
下载PDF
导出
摘要 采用计算机图形学中的多边形平均值坐标,构造出以多边形顶点为插值节点的无理函数插值方法。给出了无理函数插值在实际编程计算时的计算公式,利用这些公式可以很方便地编写出无理函数插值的计算程序。对于任意的凸区域采用一个凸多边形进行逼近,利用无理函数插值对凸域上的温度分布问题进行插值近似。数值算例表明,无理函数插值能够很好地反映出温度分布的特征。 In this paper, using mean value coordinates of polygon in computer graphics, the mean value interpolation method setting vertexes of polygon as interpolating nodes is presented. The computational formulae of mean value interpolation is given. It is easy to program it by using these formulae in practical computation. Any convex domain could be approached by convex polygon, for temperature distribution within convex domain, it could be approximated by irrational function interpolation. The numerical examples indicate that the features of temperature distributions are reflected exactly by mean value interpolation.
出处 《山东建筑工程学院学报》 2006年第3期189-192,共4页 Journal of Shandong Institute of Architecture and Engineering
基金 国家自然科学基金(10472058) 山东建筑大学科研基金(XN050103) 博士启动基金资助项目
关键词 凸区域 温度分布 多边形 平均值坐标 无理函数插值 convex domain temperature distribution polygon mean value coordinates irrational function interpolation
  • 相关文献

参考文献10

  • 1Wachspress E L. A rational finite element basis [M]. New York: Academic Press, Inc, 1975.
  • 2范亚玲,张远高,陆明万.二维任意多边形有限单元[J].力学学报,1995,27(6):742-746. 被引量:20
  • 3Dasgupta G. Interpolation within convex polygons: Wachspress' shape functions [J]. Journal of Aerospace Engineering, 2003, 16(1): 1 -8.
  • 4Malsch E A, Dasgupta G. Interpolations for temperature distributions:A method for all non-concave polygons [ J ]. International Journal of Solid and Structures, 2004,41 (8) : 2165 - 2188.
  • 5Meyer M, Lee H, Barr A, et al. Generalized barycentric coordinates on irregular polygons[J]. Journal of Graphics Tools, 2002, 7(1): 13-22.
  • 6王兆清,冯伟.Delaunay多边形单元的有理函数插值格式[J].力学季刊,2004,25(3):375-381. 被引量:16
  • 7Sukymar S, Tabarraei A. Conforming polygonal finite elements [ J ].International Journal for Numerical Methods in Engineering, 2004, 61(12): 2045-2066.
  • 8龙驭球,龙志飞,等.有限元的几个问题和进展—第十届全国结构工程学术会议特邀报告[J].工程力学,2001,18(A01):34-51. 被引量:4
  • 9Floater M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1): 19-27.
  • 10Warren J. Barycentric coordinates for convex polytopes[J]. Advances in Computational Mathematics, 1996,6(2) :97 - 108.

二级参考文献52

  • 1钱俊,龙驭球.三维切口尖端应力应变场[J].应用数学和力学,1994,15(3):199-208. 被引量:5
  • 2孙建恒,龙驭球.几何非线性广义协调三角形板单元[J].工程力学,1996,13(4):9-19. 被引量:4
  • 3孙建恒,龙驭球.用三角形广义协调元分析任意形状板的大挠度问题[J].工程力学,1996,13(A01):135-140. 被引量:1
  • 4孙建恒,龙志飞.几何非线性广义协调四边形板单元[J].工程力学,1997,14(2):43-51. 被引量:4
  • 5Ghosh, S. Mallett R L. Voronoi Cell finite elements[J]. Computers & Structures, 1994, 50(1), 33-46.
  • 6Ghosh, S. Moorthy S. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method[J]. Comput Methods Appl Mech Engrg, 1995, 121, 373-409.
  • 7Ghosh S. , Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi Cell finite element method[J]. Int J Structures, 1995, 27-62.
  • 8Belikov V V, Ivanov V D, Kontorovich V K, Korytnik S A, Semenov A Y. The non-Sibson interpolation: a new method of interpolation of the values of a function on an arbitrary set of Doints[J]. Computational Mathematics and Mathematical Physics, 1997, 37(1) :9-15.
  • 9Belikov V V, Semenov A Y. Non-Sibsonian interpolation on arbitrary system of points in Euclidean space and adaptive isolines generation[J]. Applied Numerical Mathematics. 2000, 32:371-387.
  • 10Semenov A Y, Belikov V V. New non-Sibsonian interpolation on arbitrary system of points in Euclidean space[C]. In: 15^th IMACS World Congress. Vol.2, Numerical Mathematics, Wissen Techn Verlag, Berlin, 1997, 237-242.

共引文献28

同被引文献36

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部