期刊文献+

华北地区一次黄河气旋发生发展时所引起的暴雨诊断分析 被引量:34

Diagnostic Analysis of a Heavy Rain Event in North China Caused by the Development of Yellow River Cyclone
下载PDF
导出
摘要 利用NCEP/NCAR的再分析资料和GMS红外黑体亮度温度(TBB)资料等,对1991年6月9—11日的一次黄河气旋暴雨过程进行了诊断分析。结果表明:黄河气旋的发生发展是大气斜压性强烈发展的结果,强的高空辐散与正涡度平流共同作用形成了黄河气旋,对流层低层的暖平流促进了黄河气旋的进一步发展,并对其移动方向有引导作用;暴雨出现在黄河气旋的初生、发展阶段,产生于气旋前部暖区的盾状云系中;暴雨的水汽有西南和东南两个来源,其中西南水汽通量大于东南;暴雨区上空大气具有很强的对流不稳定性,中尺度对流云团的发生发展,造成了气旋降水分布的不均匀性和强降水中心;降水造成的凝结潜热释放对气旋的发展有正反馈作用。 Yellow River Cyclone is one of the important weather systems that could produce heavy rain in North China. A heavy rain event occurred from 9 to 11 June 1991 in North China and caused by the development of a Yellow River Cyclone is studied in detail through a combined analysis of NCEP/NCAR reanalysis dataset, the temperature of black body (TBB) data of Geostationary Meteorological Satellite (GMS) and radiosonde data. It is found that the occurrence and development of Yellow River Cyclone are results of intense development of atmospheric baroclinicity not usual in summer season. The joint effects of strong divergence and positive advection of vorticity at high level trigger the Yellow River Cyclone. The warm advection at low-level in the troposphere facilitates the Cyclone's development and leads it to move. The heavy rain region is under the right side of the exit of the high level jet. In the south of the region, from 18:00(UTC) June 9, low level jet (LLJ) with wind speed greater than 14 m·s^-1 occurs at 850 hPa and transports water vapor to it. Heavy rain occurs at early stage of the Yellow River Cyclone and mainly comes from the shield clouds of the warm section of the cyclone. There are two transportation paths of water vapor in this heavy rain event: one is from southwest, the other is from southeast. And the water vapor flux from southwest is larger. The west extension and intensify of the west Pacific subtropical high help the transportation of water vapor to North China along the LLJ. The total precipitable water vapor increases obviously in North China before the occurrence of heavy rain. It is also found that the contours of relative humidity and potential temperature are dense and decrease with height over heavy rain region. The atmosphere is of intensive convective instability. From the cross sections of vorticity and vertical velocity, it is found that an obvious positive vorticity is transferred from high level vortex to the Yellow River Cyclone. Strong convergence of water vapor flux and ascending motion are found in the Cyclone, and the ascending velocity ahead of the Cyclone is larger than the subsidence velocity behind the Cyclone. Therefore, the vertical circulation is asymmetry, which improves the rapid growing of raindrops. As it is found in other studies of Yellow River Cyclone, there are meso-β-scale convective systems developping and moving along the southwest low level jet in this case. These meso-scale convective systems (MCS) in the frontal clouds cause the inhomogeneous of the precipitation and produces intensive precipitation centers. And the release of latent heat caused by precipitation has positive feed back to the development of the Cyclone.
出处 《应用气象学报》 CSCD 北大核心 2006年第3期257-265,共9页 Journal of Applied Meteorological Science
基金 国家自然科学基金项目"干旱背景下黄河流域致洪暴雨的多尺度天气学模型研究"(ZR2006-03)资助
关键词 黄河气旋 暴雨 中尺度对流系统 Yellow River Cyclone heavy rain meso-scale convective system
  • 相关文献

参考文献10

二级参考文献15

  • 1汪克付,叶金印.江淮梅雨锋暴雨过程Q矢量分析及落区预报[J].气象,1995,21(3):40-43. 被引量:15
  • 2团体著者,大气科学,1976年,1卷,6页
  • 3李修芳,国家气象中心科技年报,1994年
  • 4蒋尚城,中尺度气象文集,1993年
  • 5高守亭,大气科学,1991年,15卷,2期
  • 6丁一汇,高等天气学,1991年
  • 7田生春,气象学报,1988年,46卷,3期
  • 8丁一汇,现代天气学中的诊断分析方法,1989年,114页
  • 9林本达.大气中垂直环流的成因和诊断[G]∥北方天气文集(6).北京:北京大学出版社,1987:110-123.
  • 10张兴旺.修改的Q矢量表达式及其应用[J].热带气象学报,1999,15(2):162-167. 被引量:45

共引文献142

同被引文献430

引证文献34

二级引证文献583

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部