期刊文献+

一种新的快速BP神经网络算法——QLMBP 被引量:14

QLMBP: A Quick BP Neural Network Algorithm
下载PDF
导出
摘要 对反向传播(BP)算法中收敛速度最快的改进版本Levenberg-Marquardt BP(LMBP)进行了研究,找出了收敛速度的瓶颈:迭代控制参数的初始化会严重地影响到算法的迭代次数;涉及的矩阵求逆是每次迭代中最耗时的计算;如果每次迭代中的误差平方和没有变小,该次迭代可能需要很长时间.本文通过上下三角(LU)分解去除耗时的矩阵求逆,并采取一维搜索来加速目标函数值的下降,使得LMBP不再依赖于迭代控制参数,从而提出了一种快速神经网络算法QLMBP.QLMBP算法的收敛速度比LMBP算法快100倍左右. The improved version of BP (Back Propagation) algorithm with the fastest convergence speed, LMBP (Levenberg-Marquardt BP) algorithm, is investigated, finding out the bottlenecks of the convergence speed, that is, the initialization of iteration controlling parameters has a great influence on the iterated number, the calculation of the inverse matrix involved in each iteration is the most time-consuming, and it will take long to carry out a certain interation if the sum of squared errors in each interation is not decreased. To solve these problems, LU ( Lower-Upper) decomposition is employed to avoid the time-consuming calculation of inverse matrix, and the one-dimension searching is adopted to accelerate the decrease of the object function. Thus, a quick BP neural network algorithm named QLMBP (Quick LMBP) is proposed. The proposed QLMBP algorithm is independent on the iteration controlling parameters and its convergence speed is about 100 times that of the LMBP algorithm convergence speed.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第6期49-54,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 高校博士点专项科研基金(20015106002) 教育部高等学校优秀青年教师教学科研奖励计划
关键词 BP算法 LEVENBERG-MARQUARDT算法 上下三角(LU)分解 Marquardt灵敏度矩阵 BP algorithm Levenberg-Marquardt algorithm LU (Lower-Upper) decomposition Marquardt sensitivity matrix
  • 相关文献

参考文献9

  • 1Hagan M T, Demuth H B, Beale M. Neural network design[M]. New York. PWS Publishing Company, 1996.
  • 2Hagan M T, Menhaj M B.Training feedforward networks with the Marquardt algorithm [J]. Neural Networks, 1994,5 : 989 -993.
  • 3Wilamowski B M, Iplikci S, Kaynak O, et al. An algorithm for fast convergence in training neural networks [J]. Neural Networks ,2001,3 : 1778-1782.
  • 4Chen T C, Han D J, Au F T K, et al. Acceleration of Levenberg-Marquardt training of neural networks with variable decay rate [J]. Neural Networks, 2003,3 : 1873-1878.
  • 5李炯城,黄汉雄.神经网络中LMBP算法收敛速度改进的研究[J].计算机工程与应用,2006,42(16):46-49. 被引量:29
  • 6Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in C [M]. Cambridge: Cambridge University Press, 1992:32-104.
  • 7陈非,敬忠良,姚晓东.一种模糊神经网络的快速参数学习算法[J].控制理论与应用,2002,19(4):583-587. 被引量:21
  • 8陆婷,葛红,毛宗源,游林儒.一种改进的进化回归神经网络系统[J].华南理工大学学报(自然科学版),2004,32(3):50-55. 被引量:2
  • 9李庆扬 王能超.数值分析[M].武汉:华中理工大学出版社,1982..

二级参考文献22

  • 1谭永红.多层前向神经网络的RLS训练算法及其在辨识中的应用[J].控制理论与应用,1994,11(5):594-599. 被引量:28
  • 2李庆扬 王能超.数值分析[M].武汉:华中理工大学出版社,1982..
  • 3Mahnig T,Mfihlenbein H. A comparison of stochastic local search and population based search [A]. Proceedings of the 2002 Congress on Evolutionary Computation ( CEC2002 ) [ C ]. Honolulu, HI, USA, 2002.255 - 260.
  • 4Renders J M, Bersini H. Hybridizing genetic algorithms with hill-climbing methods for global optimization - two possible ways [A]. Proceedings of the First IEEE Conf On Evolutionary Programming [ C ], 1994.312-317.
  • 5Yao X,Liu Y. Ensemble structure of evolutionary artificial neural networks [A]. Proceedings of IEEE International Conference on Evolutionary Computation [C].Nagoya ,Japan, 1996. 659 - 664.
  • 6Zhang B T, Veenker G. Neural networks that teach themselves through genetic discovery of novel examples[A]. IEEE International Joint Conference on Neural Networks [C]. Seattle, USA, 1991,1:690 - 695.
  • 7Mahnig T,Mühlenbein H.A comparison of stochastic local searchand population based search[A].Proceedings of the 2002 Congress on Evolutionary Computation (CEC2002)[C].Honolulu,HI,USA,2002.255-260.
  • 8Renders J M,Bersini H.Hybridizing genetic algorithms with hill-climbing methods for global optimization-two possible ways[A].Proceedings of the First IEEE Conf On Evolutionary Programming[C],1994.312-317.
  • 9Yao X,Liu Y.Ensemble structure of evolutionary artificial neural networks[A].Proceedings of IEEE International Conference on Evolutionary Computation[C].Nagoya,Japan,1996.659-664.
  • 10Zhang B T,Veenker G.Neural networks that teach themselves through genetic discovery of novel examples[A].IEEE International Joint Conference on Neural Networks[C].Seattle,USA,1991,1:690-695.

共引文献134

同被引文献96

引证文献14

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部