期刊文献+

基于改进免疫遗传算法的交通信号优化控制 被引量:4

The Optimization for Traffic Signal Based on Improved Immunogenetic Algorithm
原文传递
导出
摘要 阐述免疫遗传学的基本原理,对传统免疫遗传算法做了改进.模拟抗体两次应答抗原的机理,引入信息熵计算抗原间的亲和力,选择亲和力高且相似度低的抗体遗传到后代,运用细胞记忆机制保存优良抗体,并令记忆细胞参与进化。避免算法陷入局部最优值.在此基础上,提出一种更新的相位配时优化算法对交通信号控制问题进行探讨,并设计相应的仿真实验.对一个四相位单交叉路口的交通流进行建模和分析,实验结果验证该算法处理交通配时优化问题的可行性和有效性. In this paper the basic principle of immunogenetics is described , and the traditional immunogenetics algorithm is improved. The mechanism that the antibody twice responds to the antigen is simulated. Information entropy is utilized to compute the affinity between antigens and the antibodies that have high affinity and low similarity are inherited to next generation . Best antibodies are kept in memory set then participate in evolution , which can make the algorithm avoid losing in the local optimal solution. A new phase timing optimization algorithm is proposed to discuss the problem of traffic signal control. An experiment for the traffic model at a four-phase single intersection is designed with this algorithm, and the simulation results show its feasibility and effectiveness.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2006年第3期331-337,共7页 Pattern Recognition and Artificial Intelligence
基金 上海市科委重大科技攻关资助项目(No.03DZ15029)
关键词 免疫遗传 免疫应答 四相位 配时优化 Immunogenetic,Immune Response,Four-Phase,Timing Optimization
  • 相关文献

参考文献8

  • 1Ceylan H, Bell M G H, Traffic Signal Timing Optimization Based on Genetic Algorithm Approach, Transportation Research B, 2004, 38(4):329--342
  • 2王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78. 被引量:351
  • 3de Castro L N, yon Zuben J. Learning and Optimization Using the Clonal Selection Principle. IEEE Trans on Evolutionary Computation, 2002, 6(3): 239- 251
  • 4Hunt J E, Cooke D E. Learning Using an Artificial Immune System. Journal of Network and Computer Applications, 1996, 19(3): 189--212
  • 5丁永生,任立红.人工免疫系统:理论与应用[J].模式识别与人工智能,2000,13(1):52-59. 被引量:98
  • 6Mirchandani P B, Head K L. Real-Time Traffic Signal Control System: Architecture, Algorithms, and Analysis. Transportation Research C, 2001, 9(6): 415--432
  • 7Jiao L C, Wang L. A Novel Genetic Algorithm Based on Immunity. IEEE Trans on System, Man, and Cybernetics--Part A: System and Human, 2000, 30(5) : 552--561
  • 8Forrrest S, Javornik B, Smith R E, Perelson A S, Using Ge netic Algorithms to Explore Pattern Recognition in the Immune System. Evolutionary Computation,1993, 1(3): 191-211

二级参考文献4

共引文献432

同被引文献41

  • 1柴永生,孙树栋,余建军,吴秀丽.基于免疫遗传算法的车间动态调度[J].机械工程学报,2005,41(10):23-27. 被引量:21
  • 2付绍昌,黄辉先,肖业伟,吴翼,王宸昊.自适应变异粒子群算法在交通控制中的应用[J].系统仿真学报,2007,19(7):1562-1564. 被引量:14
  • 3万伟,陈锋.基于遗传算法的单交叉口信号优化控制[J].计算机工程,2007,33(16):217-219. 被引量:13
  • 4张世惠,徐海峰,等.风力发电机组齿轮箱故障诊断[C]∥中国太阳能学会风能专委会会论文集.2002.
  • 5缑冬青.骨折断面愈合应力实验分析与计算机仿真研究[D].郑州:河南科技大学,2003.
  • 6沈国红.城市道路交通智能控制技术研究[D].杭州:浙江大学, 2004: 33-58.
  • 7PRICE K, STORN R M, LAMPINEN J A. Differential evolution: a practical approach to global optimization[M]. Berlin, Germany: SpringerVerlag, 2005.
  • 8ZAHARIE D. Critical values for the control parameters of differential evolution algorithms[C]//Proceedings of the 8th International Conference on Soft Computing. Brno, Czech Republic, 2002: 62-67.
  • 9LAMPINEN J, ZELINKA I. On stagnation of the differential evolution algorithm[C]//Proceedings of the 6th International Conference on Soft Computing. Brno, Czech Republic, 2000: 76-83.
  • 10FAN Huiyuan, LAMPINEN J. A trigonometric mutation operation to differential evolution[J]. Journal of Global Optimization, 2003, 27(1): 105-129.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部