期刊文献+

最小方方法的一种优化方法

An optimized method for minimal cubing approach
下载PDF
导出
摘要 数据立方体在许多多维数据的数据仓库的高速OLAP操作中扮演着重要的角色.但在许多高维的数据仓库的应用中,查询分析效率是个关键的问题.例如超过100维,大约106个元组.在这样高维情况下建立全物化数据立方体来减少分析时间是不可行的.利用最小方的方法可以在高维数据集上进行有效OLAP操作的方法.如果能根据查询分析的历史记录合理地为立方体的维分片,就能在相同空间复杂度的情况下提高OLAP操作的效率. Data cube has been playing an important role in the high dimensional OLAP operations. However, when it comes to many applications of high-dimensional data warehouse, the efficiency of querying analysis is a critical issue. For instance, some applications are over one hundred dimension about 10^6 tuples. Under this circumstance, it is unfeasible to reduce analyzed time by constructing materialized data cube wholly. OLAP operations on high-dimensional data set can be done by using minimal cubing approach. The high dimensions can be partitioned properly to accelerate querying analysis by studying the historical records of OLAP operations, By doing this the efficiency of OLAF' operations can be improved with the similar space complexity.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2006年第3期53-56,共4页 Journal of Shandong University(Natural Science)
关键词 物化立方体ID 相关维 查询日志 materialized cuboids concerned dimension querying log
  • 相关文献

参考文献11

  • 1S Agarwal, R Agrawal, P M Deshpande. On the computation of multidimen-sional aggregates[A]. Proceedings of 22th International Conference on Very Large Data Bases [C]. Mumbai,India: Morgan Kaufmann, 1996. 506-521.
  • 2Y Zhao, P M Deshpande, An array-based algorithm for simultaneous multidimensional aggregates [A]. Proceedings ACM SIGMOD International Conference on Management of Data[C].Tucson, Arizona, USA: ACM Press, 1997. 159-170.
  • 3K Beyer, R Ramakrishnan. Bottom-up computation of sparse and iceberg cubes[A]. Proceedings ACM SIGMOD International Conference on Management of Data[C]. Philadelphia,Pennsylvania, USA: ACM Press, 1999. 359-370.
  • 4J Han, J Pei, G Dong. Efficient computation of iceberg cubes with complex measures [A]. Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data[C].Santa Barbara, California, USA: ACM Press, 2001, 1 - 12.
  • 5D Xin, J Han, X Li. Starcubing: Computing iceberg cubes by top-down and bottom-up integration [A]. Proceedings of 29th International Conference on Very large Data Bases[C]. Berlin, Germany: Morgan Kaufmann, 2003. 476 - 487.
  • 6V Harinarayan, A Rajaraman, J D Ullman. Implementing data cubes efficiently[A]. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data [C]. Montreal, Quebec, Canada: ACM Press, 1996. 205 - 216.
  • 7L V S Lakshmanan, J Pei, J Han. Quotient cube: How to summarize the semantics of a data cube[A]. Proceedings of of 28th International Conference on Very Large Data Bases [C].HongKong, China: Morgan Kaufmann, 2002. 778 - 789.
  • 8L V S Lakshmanan, J Pei, Y Zhao Qctrees. An efficient summary structure for semantic olap[A]. Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data [C]. San Diego, California, USA: ACM Press, 2003. 64 -75.
  • 9Y Sismanis, N Roussopoulos, A Deligianannakis. Dwarf:Shrinking the petacube [A]. Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data[C].Madison, Wisconsin, USA: ACM Press, 2002. 464 - 475.
  • 10W Wang, H Lu, J Feng. Condensed cube: An effective approach to reducing data cube size[A]. Proceedings of the 18th International Conference on Data Engineering[C]. San Jose,California, USA: IEEE Computer Society, 2002. 155 - 165.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部