期刊文献+

嵌入式隐Markov模型的分段训练方法

Segmental training scheme for embedded hidden markov model
下载PDF
导出
摘要 针对嵌入式隐Markov模型再学习问题,提出了分段训练方法用于人脸识别:把当前的训练样本看作整体训练样本的一部分,训练结束后存储训练后的模型参数和中间变量;增加新样本后,以当前模型参数作为初始模型参数,用新增样本训练模型,得到新的中间变量,最后将已存储的中间变量和用新样本计算得到的中间变量合成,得到最终的模型.人脸识别实验结果表明了该方法的可行性. A segmental scheme to retrain E-HMM (embedded hidden Markov models) for face recognition was presented. The current samples were assumed to be a subset of the whole training samples, after the training process, the E-HMM parameters and the necessary temporary parameters in the parameter re-estimating process were. saved for the use of next step. When new training samples were added, the trained E-HMM parameters were chosen as the initial parameters, the E-HMM was retrained based on the new samples and the new temporary parameters were obtained. These temporary parameters were combined with the saved temporary parameters to form the final E-HMM parameters so that one person face was presented. Experiments on face database showed that the segmental training method was effective.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2006年第6期695-699,共5页 Journal of Beijing University of Aeronautics and Astronautics
关键词 隐马尔可夫模型 分段训练 人脸识别 随机建模 hidden markov model segmental training face recognition stochastic modeling
  • 相关文献

参考文献10

  • 1Rabiner L.A tutorial on HMM and selected applications in speech recognition[J].Proc of IEEE,1989,77(2):257-286
  • 2Kuo S,Agazzi O.Keyword spotting in poorly printed documents using pseudo 2-D hidden Markov models[J].IEEE Trans on PAMI,1994,16(8):842-848
  • 3Nefian A V,Hayes Ⅲ H.Maximum likelihood training of the embedded HMM for face detection and recognition[C]//Proc of the International Conference on Image Processing.Vancouver,BC,Canada:[s.n.],2000:33-36
  • 4Wallhoff F,Eickeler S,Gigoll G.A comparison of discrete and continuous output modeling techniques for a pseudo-2D hidden Markov model face recognition system[C]// Proc of International Conference on Image Processing.Thessaloniki.Greece:[s.n.],2001:685 -688
  • 5Liu Xiaoming,Chen Tsuhan.Video-based face recognition using adaptive hidden Markov models[C]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Madison,Wisconsin,USA:[s.n.],2003:340-345
  • 6Zhao W.Face recognition:a literature survey[R].CS-TR-4167R,2002
  • 7AT&T Laboratories Cambridge.ORL Face database[DB/OL].http://www.uk.research.att.com/facedatabase.html,1994-04-01
  • 8Turk M,Pentland A.Eigenceface for recognition[J].Journal of Cognitive Neuoscience,1991,3 (3):71-86
  • 9Ben-Arie J,Nandy D.A volumetric/iconic frequency domain representation for object with application for pose invariant face recognition[J].IEEE Trans on PAMI,1998,20(3):449 -457
  • 10Lawrence L,Giles S C,Tsoi A C,et al.Face recognition:a convolutional neural network approach[J].IEEE Trans on NN,1997,8(1):98-113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部