期刊文献+

密度核估计中对MSE与MISE的渐近性态研究

Asymptotic research of MSE and MISE in kernel density estimate
下载PDF
导出
摘要 对于维随机变量在给定权函数的条件下,利用密度核估计值分析了(meansquareerror)与(meanintegratesquareerror)的渐近比较结果,研究了局部和全局的估计值与理论值的接近程度,并给出了最优收敛速度和理想窗宽选择,最后得出了的渐近优越性。 In this paper, based on the weight functions in density estimate, the main results of asymptotic behavior of MSE and MISE of ^∧fn are shown, local and global closeness of ^∧fn to the real densityf are measured. Underlying these results, the optimal convergence rate for MSE(^∧fn, f(x)) and MISE(^∧fn, f(x)) and the ideal bandwidth choices are presented. The asymptotic superiority of ^∧fn over others is concluded.
出处 《燕山大学学报》 CAS 2006年第3期239-242,共4页 Journal of Yanshan University
关键词 核估计 窗宽 非参数 收敛速度 kernel density estimate bandwidth nonparametric rate of convergence
  • 相关文献

参考文献7

  • 1陈希儒,方兆本,李国英,等.非参数统计[M].上海:上海科学技术出版社,1989:361-367.
  • 2Gill R D,Vardi Y,Wellner J A.Large sample theory of empirical distribution in biased sampling models[J].Ann Statist,1988,16,1069-1182.
  • 3Wu C O.Kernel smoothing of the nonparametric maximum likelihood estimation for biased sampling models[J].Math Methods Statist.1996,5:275-298.
  • 4Vardi Y.Empirical distributions in selection bias models[J].Annals Statist,1985,13:178-205.
  • 5Ahmad I A.On multivariate kernel estimation for samples from weighted distribution[J].Statist Probab Lett,1995,22:121-124.
  • 6Silverman B W.Density Estimati-on for Statistics and Data Analysis[M].London:Chapman andHall,1986.
  • 7严士健,刘秀芳.概率与测度[M].北京:北京师范大学出版社,1994.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部