摘要
设为F区域D上亚纯函数簇,k∈Z+(k≥2),m∈Z+,a≠0,b为两有穷复数,c(z)≠0为D上解析函数,f∈F,f′(z)的零点之级≥m,并且f(z)在区域D上的极点总个数(计算重数)至多为m个,f(z)=a f′(z)=b,f(z)=0 0 f′(z)=c(z),f′(z)=c(z)|f(k)(z)|≤h,那么F在区域D内正规.
Let F be a family of meromorphic functions in a domain D, let k ≥2, m be two positive in tegers. Let a ≠0, b be two finite complex numbers; and let c(z) be a function holomorphic in D such that c(z) ≠0 for z ∈ D. If, for every f∈ F, all zeros off(z) have multiplicity ≥m , the number of all poles of f'(z) in D is at most m andf(z) = a→f(z) = b,f(z) =0→f(z) =c(z),f'(z) =c(z)→|f^(k) (z)|≤h, then F is normal in D.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2006年第6期84-86,共3页
Journal of Chongqing University
关键词
亚纯函数
正规族
一致收敛
meromorphic function
normal family
uniform convergence