期刊文献+

通过迭代学习简化支持向量机决策函数

Simplify Support Vector Machines by Iterative Learning
下载PDF
导出
摘要 支持向量机经过实践证明在小样本的情况下具有良好的泛化能力。但是在手写体数字识别的实验中,支持向量机被发现其在分类阶段的速度明显比神经网络要慢,因此在不影响支持向量机泛化能力的前提下简化支持向量机的决策函数,从而提高SVM的分类速度是很有意义的研究。利用迭代学习的方法来简化支持向量机的决策函数,实验证明本文的方法能够极大的简化SVM的决策函数,该方法易于实施。 Support vector machines (SVM) perform good generalization ability on various application fields in practice, especially for small sample problems. But in the SVM research on handwritten character recognition, it is substantially slower in test phase than neural networks with same generalization performance. So simplifying SVM without loss in generalization ability is important research in order to improve the classification speed of SVM. In this paper, we use iterative learning method to simplify the decision function of SVM. Computational results show that our method can simplify SVM effectively, it cam be implemented easily.
作者 刘丽涛
出处 《计算技术与自动化》 2006年第2期117-119,共3页 Computing Technology and Automation
关键词 支持向量机SVM 简化的支持向量机 迭代学习 support vector machines simplified SVM iterative learning
  • 相关文献

参考文献4

  • 1V.Vapnik."Estimation of Dependences based on Empirical Data",Berlin:Springer-Verlag,1982.
  • 2C.J.C.Burges."A Tutorial on Support Vector Machines for Pattern Recognition"[J],Data Mining and Knowledge Discovery,2(2):pp.121-167,1998.
  • 3C.J.C.Burges."Simplified Support Vector Decision Rules"[J],13th International Conference on Machine Learning,pp.71-77,1996.
  • 4H.Sahbi,D.Geman and N.Boujemaa."Face detection using coarse-to-fine support vector classifiers"[J],IEEE ICIP 2002,vol(3),pp.925-928,2002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部