期刊文献+

一类连续不可微函数的分形性质 被引量:2

Fractal Properties of a Class of Fractal Functions
下载PDF
导出
摘要 分形函数的研究在分形几何中占有重要的地位,在分形函数的研究中分形维数的讨论则是一个重要的数学手段。由迭代产生的分形函数的维数已基本解决。文中对另一类处处连续点点不可微函数进行了研究,并用网立方体与函数相交的方法对该分形函数的Box维数的上下界、填充维及Hausdorff维数上界进行了估计,同时讨论了该分形函数的Ho!lder条件,并把结果推广到了Bush函数,最终使该分形函数的一些分形性质得到了解决。 Analysis for a class of fractal functions plays a significant role in the fractal geometry, and the discussion about fractal dimensions is an important mathematical method in the study of fractal dimensions. Dimensions of fractal functions produced by iterated function systems have been solved. A class of functions which are everywhere continuous and nowhere differentiable are analyzed. Using the intersection of mesh squares and functions, some estimate respectively for upper and lower bound of Box , Packing and upper bound of Hausdorff dimensions is given ,besides the fractal functions" Holder condition is discussed, and the result to Bush function is extended, so some important characters of the fractal function are got at last.
作者 王晓明
机构地区 江苏大学理学院
出处 《安徽工业大学学报(自然科学版)》 CAS 2006年第3期356-359,共4页 Journal of Anhui University of Technology(Natural Science)
基金 国家自然科学基金资助项目(10571076)
关键词 b-进制 分形函数 BOX维数 HAUSDORFF维数 填充维数 b-adic fractal function Box dimensions Hausdorff dimensions packing dimensions
  • 相关文献

参考文献4

二级参考文献15

  • 1Falconer, K. J., Fractal geometry-mathematical foundations and applications [M], John and Sons, New York, 1990.
  • 2Falconer, K. J., Techniques in fractals geometry [M], John and Sons, New York, 1996.
  • 3Tricot, C., Two definitions of fractional dimension [J], Math. Proc. Camb. Phil. Soc.,91(1982), 57-74.
  • 4Taylor, S. J. & Tricot, C., Pcking measure, and its evaluation for Brownian path [J],Trans. of the Amer. Math. Soc., 288:2(1985), 679-699.
  • 5Taylor, J. & Tricot, C., The packing measure of rectifiable subsets of the plane [J],Math. Proc. Camb. Phil. Soc., 99(1986), 285-296.
  • 6Colleen, D., Culter, strong and weak duality principles for fractal dimension in Euclidean space [J], Math. Proc. Camb. Phil. Soc., 118(1995), 393-410.
  • 7Feng Dejun, Hua Su & Wen Zhiying, Some relations between packing pre-measure and packing measure [J], Bull. London. Math. Soc., 31:6(1999), 665-670.
  • 8Feng Dejun, Hua Su & Wen Zhiying, The pointwise densities of the Cantor measure[J], J. of Math. Analysis and Appli., 250(2000), 692-705.
  • 9Wang H Y,Appl Math J Chin Univ,2000年,15卷,1期,7页
  • 10Wang H Y,数学研究,1996年,29卷,1期,87页

共引文献7

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部