期刊文献+

基于环形连杆机构原理的可展结构设计 被引量:3

Design of retractable structure based on closed-loop linkages
下载PDF
导出
摘要 结合四面体旋转环机构和三向对称六连杆机构的基本原理,设计了一种向外翻转开启式可展结构.这种结构以6个四面体构件形成的三向对称环形连杆机构为基础,通过四面体绕相邻铰转动实现结构的闭合和开启.详细阐述了该可展结构的形式和设计原理.当结构的支座向结构中心轴方向运动时,结构向外翻转逐渐开启;相反,当支座远离结构中心轴方向运动时,结构向内转动直到相邻四面体的面相互接触而闭合.从结构基本几何参数出发确定了每个四面体的形状和尺寸,并建立了四面体环形结构与相应三向对称六连杆机构的关系.然后以结构在任一展开状态时旋转铰轴线倾斜方向为广义位移,得到旋转变量的输入输出关系方程,证明了结构的运动具有单自由度. Based on Kaleidocycles and threefold-symmetric Bricard linkages, a new type of retractable structure was developed. This structure took threefold-symmetric Bricard linkages, composed of six tetrahedrons, as fundament, and implemented retractability through tetrahedrons' rotation around the adjacent hinges. The form and design principle of this structure was presented. On the basis of the geometric parameters of this structure, the shape and dimension of every tetrahedron were determined, and then the relationship between rings of tetrahedron and the corresponding threefold-symmetric Bricard linkages was established. Furthermore, taking the inclining direction of the rotating axes as general displacements, the input-output equation of the rotating variables was obtained, which demonstrated that the movement of this structure had one freedom degree.
出处 《工程设计学报》 CSCD 北大核心 2006年第3期145-149,共5页 Chinese Journal of Engineering Design
基金 国家自然科学基金资助项目(50378083) 浙江大学永谦出国访问基金资助项目
关键词 连杆机构 四面体旋转环 可展结构 单自由度运动 linkages kaleidocycle retractable structures single DOF mobility
  • 相关文献

参考文献11

  • 1BRICARD R. Memoire sur la Theorie de l'Octaedre Articule[J]. Journal de Mathematiques Pures et Appliquees, 1897,5(3):113-148.
  • 2BRICARD R. Lecons de cinematique[M]. Paris: Gauthier-Villars, 1927:7-12.
  • 3BENNETT G T. Deformable octahedral[J]. Proceeding of London Mathematics Society, 1911, 10(1): 309-343.
  • 4BAKER J E. An analysis of Bricard linkages[J]. Mechanism and Machine Theory, 1980, 15:267-286.
  • 5SCHATTSCHNEIDER D, WALKER W M C. Escher Kalerdocycles [M]. New York: Ballantine Books,1977.
  • 6PAUL Schatz. Rhythmusforschung und Technik[M].Stuttgart: Verlag Freies Geistesleben, 1998.
  • 7FRANZ Zahaurek. Der Umstulpbare Wurfel Nach Paul Schatz[DB/OL]. http://www. fzk. at/, 2005-08-10.
  • 8ROUSE BALL W W, COXETER H S M. Mathematical Recreation and Essays (13th ed)[M]. New York:Courier Dover Publications, 1987:154-155.
  • 9GOLDBERG M. New five-bar and six-bar linkages in three dimensions[J]. Transaction of the ASME, 65:649-663.
  • 10GAN W W, PELLEGRINO S. Closed-loop deployable structures [C]// Proc. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Norfolk, VA: AIAA 2003-1450,2003.

同被引文献15

  • 1吴明儿,关富玲.可展结构的展开分析[J].杭州电子工业学院学报,1993,13(2):13-21. 被引量:12
  • 2余永辉,关富玲,陈向阳.可展桁架运动过程动力学模拟[J].计算力学学报,2005,22(2):197-201. 被引量:8
  • 3赵孟良,吴开成,关富玲.空间可展桁架结构动力学分析[J].浙江大学学报(工学版),2005,39(11):1669-1674. 被引量:28
  • 4GUEST S D, PELLEGRINO S. Inextensional wrapping of flat membranes[C]//The First International Conference on Structural Morphology. Montpellier, France, September 1992.
  • 5MIURA K. Novel form of paper maps enabling longitudinal access [C]//American Congress on Surveying Mapping 2005 Conference Sessions. Las Vegas, US, 2005.
  • 6MIURA K. Folded map and atlas design based on the geometric principle[C]//Proeeedings of the 20th Inter national Cartographic Conference. Beijing, China, 2001.
  • 7Gan W W, Pellegrino S. A Numerical Approach to the Kinematic Analysis of Deployable Structures Forming a Closed Loop[D]. Cambridge: University of Cambridge, 2006.
  • 8Gan W W, Pellegrino S. Kinematic Bifurcations of Closed- loop Deployable Frames[C]//Proceedings of the 5th International Conference on Computation of Shell and SpatialStruetures. Salzburg,2005:1-4.
  • 9Chen Y, You Z. Square Deployable Frames for Space Applications [J]. Aerospace Engineering, 2006, 3(3) :347-354.
  • 10Chen Y , You Z, Tibor T. Threefold- symmetric Bricard Linkages for Deployable Structures[J]. In- ternational Journal of Solids and Structures, 2005, 42: 2287-2301.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部