期刊文献+

面向流程企业数据仓库的设计与应用 被引量:2

Design & application of data warehouse oriented to process industry
下载PDF
导出
摘要 建立了应用于某流程企业的数据仓库。首先分析了数据的不同来源,设计了基于此数据源的数据清洗工具,提出数据清洗时遇到的技术问题和解决方案,并着重分析了罩盖技术检查重复数据的过程。采用数据仓库-实体联系概念模型设计了生产费用、油气生产、干气和副产品库存为主题的数据仓库,并用商业智能插件实现了联机分析处理对数据仓库的查询。采用了基于主成分分析和拉格朗日公式的支持向量机方法建立了此公司各产品产量的分析预测模型,实现了用干气预测原料气和副产品的功能,获得了良好的经济效益。 A Data Warehouse (DW) was built in a process industry. Firstly, different sources of data were analyzed and the Extraction Transformation Loading (ETL) tool for DW was designed. Then, the technical problems and solutions encountered in the process of data cleaning were proposed. The Canopy methods to clean reduplicate data were studied in detail. DW with the subject of production cost, output of oil and gas, storage of gas and byproducts were designed by Data Warehouse-Entity Relationship (DWER) model and inquired with On-Line Analytical Processing (OLAP) by Business Intelligence (BI) beans. Finally, the model to predict outputs between products was built by Principal components analysis Lagrange Support Vector Machine (PLSVM) method. As a result, the output of raw gas and byproducts could be predicted by gas.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2006年第6期899-904,共6页 Computer Integrated Manufacturing Systems
基金 国家863/CIMS主题资助项目(2002AA412410)~~
关键词 数据仓库 数据清洗工具 罩盖技术 数据仓库-实体联系概念模型 支持向量机方法 data warehouse extraction transformation loading tool canopy methods data warehouse- entity relationship model support vector machine method
  • 相关文献

参考文献9

  • 1EDGAR C,ISABEL B.Coordination and optimization in oil and gas production complexes[J].Computers in Industry,2004,42(1):17-37.
  • 2唐懿芳,钟达夫,严小卫.基于聚类模式的数据清洗技术[J].计算机应用,2004,24(5):116-119. 被引量:13
  • 3SALTON G,BUCKLEY C.Term-weighting approaches in automatic text retrieve[J].Information processing and Management,1988,24(5):513-523.
  • 4LEVENSHTEIN V,Binary code scapable of correcting deletions,insertions and reversals[J].Soviet Physics Doklady,1966,10(8):707-710.
  • 5Oracle9i Business Intelligence Beans.An Oracle white paper[EB/OL].Http://otn.Oracle.Com,2003-09-17.
  • 6陈明,吴国文,施伯乐.数据仓库概念模型的设计[J].小型微型计算机系统,2002,23(12):1453-1458. 被引量:16
  • 7BURGES C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 8CAO L J,CHUA K S,CHONG W.A comparison of PCA,KPCA and ICA for dimensionality reduction in support vector machine[J].Neuro Computing,2003,55 (2):321-336.
  • 9CHANG Chichung,LIN Chijen.LIBSVM:a library for support vector machines[EB/OL].http://www.csie.ntu.edu.tw/-cjlin/libsvm,2001-12-04.

二级参考文献24

  • 1[1]Golfarelli M, Maio D, Rizzi S. A methodological framework for data warehousing design[J]. ACM Workshop on Data Warehousing and OLAP, 1998
  • 2[2]Husemann B, Lechenborger J, Vossen G. Conceptual data warehouse design[C]. Proceedings of the International Workshop on Design and Management of Data Warehouses (DMDW'2000). Sweden, June 5~6, 2000
  • 3[3]Buzydlowski J W, Song I, Hassel L. A framework for object-oriented on-line analytic processing[C]. Proc. Of the 1st Int. Workshop on Data Warehouse and OLAP(DOLAP'98), Washington D. C., Nov. , 1998.
  • 4[4]O'Neil P. Model 204 architecture and performance[J]. Lectures Notes in Computer Science n. 359,1987
  • 5[5]O'Neil P, Graefe G. Multi-table joins through bitmapped join indices[J]. SIGMOD Record, 8~11, Sept. 1996
  • 6[6]Gray J, Chaudhuri S , Bosworth A, Layman A, Reichart D, Venkatrao M, Pellow F, Pirahesh H. Data cube: a relational aggregation operator generalizing group-by, cross-tab and sub-totals[J]. Data Mining and Knowledge Discovery, 1997. 1(1): 29~54
  • 7[7]Lomet D, Salzberg B. The HB-Tree: a multidimensional indexing method with good guaranteed performance[J]. ACM Trans. On Database Systems 15, 44 625~658,1990
  • 8[8]Gupta H, Harinarayan V, Rajaraman A. Index selection for OLAP[C]. Proc. Int. Conf. Data Engineering, Binghamton, 1997.
  • 9[9]Cohen S, Nutt W, Serebrenik A. Algorithms for rewriting aggregate queries using view[C]. Proc. Symposium on Advances in Database and Information System, Sept. 2000
  • 10[10]Chaudhuri S, Vardi M Y. optimization of real conjunctive queries[J]. Symposium on Principles of Database Systems. May, 1993, ACM Press

共引文献27

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部