期刊文献+

求解作业车间调度问题的广义粒子群优化算法 被引量:30

General particle swarm optimization algorithm for job-shop scheduling problem
下载PDF
导出
摘要 为克服传统粒子群优化算法在解决组合优化问题上的局限性,分析了其优化机理,并在此基础上提出了广义粒子群优化模型。按照此模型提出了一种求解作业车间调度问题的广义粒子群优化算法。在本算法中,利用遗传算法中的交叉操作作为粒子间的信息交换策略,利用遗传算法中的变异操作作为粒子的随机搜索策略,而粒子的局部搜索策略则采用禁忌搜索来实现。为了控制粒子的局部搜索以及向全局最优解的收敛,迭代过程中交叉概率以及禁忌搜索的最大步长都是动态变化的。实验结果表明,本算法可有效地求解作业车间调度问题,验证了广义粒子群优化模型的合理性。 To overcome the limitations of traditional Particle Swarm Optimization (PSO) on solutions to the combinatorial optimization problems, a General PSO (GPSO) model was proposed after analyzing the optimization mechanism of the traditional PSO. Based on this model, a GPSO algorithm was presented to solve the Job-shop Scheduling Problem (JSP). In GPSO, crossover and mutation operations in genetic algorithm were respectively utilized by particles to exchange information and search randomly. Besides, Tabu Search was used for particles" local search. To control the local search and ensure its convergence to the global optimum solution, time-varying crossover probability and time-varying maximum step size of Tabu Search were introduced. The experimental results showed that JSP could be solved by GPSO effectively. The feasibility of the proposed GPSO model was also demonstrated.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2006年第6期911-917,923,共8页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(50305008)~~
关键词 粒子群优化 遗传算法 禁忌搜索 作业车间调度 particle swarm optimization genetic algorithm tabu search job- shop scheduling
  • 相关文献

参考文献23

  • 1KENNEDY J,EBERHART R C.Particle swarm optimization[A].Proceedings of IEEE International Conference on Neural Networks[C].Piscataway,NJ,USA:IEEE Service Center,1995.1942-1948.
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3IOAN C T.The particle swarm optimization algorithm:convergence analysis and parameter selection[J].Information Processing Letters,2003,85(6):317-325.
  • 4高海兵,高亮,周驰,喻道远.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(9):1572-1574. 被引量:95
  • 5CARLOS A C,GREGORIO T P,MAXIMINO S L.Handing multiple objectives with particle swarm optimization[J].IEEE Transaction on Evolutionary Computation,2004,8 (3):256 -279.
  • 6HE Z,WEI C.Extracting rules from fuzzy neural network by particle swarm optimization[A].Proceedings of IEEE International Conference on Evolutionary Computation[C].Piscataway,NJ,USA:IEEE Service Center,1998.74-77.
  • 7WANG Kangping,HUANG Lan,ZHOU Chunguang,et al.Particle swarm optimization for traveling salesman problem[A].Proceedings of the Second International Conference on Machine Learning and Cybernetics[ C].Piscataway,NJ,USA:IEEE Service Center,2003.1583-1585.
  • 8TASGETIREN M F,SEVKLI M,LIANG Y,et al.Particle swarm optimization algorithm for single machine total weighted tardiness problem[A].Congress on Evolutionary Computation[C].Piscataway,NJ,USA:IEEE Service Center,2004.1412-1419.
  • 9CAREY E L,JOHNSON D S,SETHI R.The complexity of flowshop and job-shop scheduling[J].Mathematics of Operations Research,1976,1 (2):117-129.
  • 10CROCE F D,TADEI R,VOLTA G.A genetic algorithm for the job shop problem[J].Computers & Operations Research,1995,22(1):15-24.

二级参考文献41

  • 1LENSTRA J K, RINNOOY, KAN A H G, BRUCKER P. Complexity of machine scheduling problem[J]. Ann. Discr.Math. ,1997,(1):343-362.
  • 2BLAZEWICZ J, DOMSCHKE W, PESCH E. The Job shop scheduling problem:conventional and new solution techniques [J]. European Journal of Research, 1996,93 ( 1 ): 1 - 33.
  • 3JAIN A S,MEERAN S. Deterministic Job-shop scheduling: past,present and future[J]. European Journal of Research,1999,113(2) :390-434.
  • 4LAARHOVEN Van P,AARTS E,LENSTRA J K. Job shop scheduling by simulated annealing[J]. Operations Research,1992,40(1) :113-125.
  • 5NOWICKI E,SMUTNICKI C. A fast taboo search algorithm for the Job shop problem[J]. Management Science, 1996, 42(6):797-813.
  • 6CARLIER J,PINSON F. An algorithm for solving the Jobshop problem[J]. Management Science, 1989,35 (2): 164 -176.
  • 7RODAMMER F A,WHITE K P. A recent survey of production scheduling[J]. IEEE Trans. SMC, 1988,18 (6): 841 -851.
  • 8MITSOU G, YASUHIRO T, ERIKA K. Solving Job- shop scheduling problems by genetic algorithm[A]. Proceedings of the 1995 IEEE International Conference on Systems, Man,and Cybernetics[C]. Vancouver:Institute of Electrical and Electronics Engineers, 1995. 1577- 1582.
  • 9GUOYONG S, HITOSHI ⅡMA,NOBUO S. A new encoding scheme for Job Shop problems by Genetic Algorithm[A].Proceedings of the 35th Conference on Decision and Control[C]. Kobe,Japan, 1996.4395-4400.
  • 10CHEN Xiong, KONG Qingsheng,WU Qidi. Hybird algorithm for Job-shop scheduling problem[A]. Proceeding of the 4th Congress on Intelligent Control and Automation[C]. Shanghai: East China Univ. of S&T Press, 2002. 1739-1743.

共引文献551

同被引文献246

引证文献30

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部