期刊文献+

结构随机延性需求谱的应用研究 被引量:1

APPLICATION RESEARCH ON PROBABILITY DUCTILITY DEMAND SPECTRUM
下载PDF
导出
摘要 结构的地震反应危险性曲线体现了结构的地震反应与地震动强度之间的关系,采用随机延性需求谱可以很方便地建立结构的地震反应危险性曲线。非线性结构在随机地震作用下的位移反应分析属于非线性随机振动问题,采用随机延性需求谱可以简单而有效的获得非弹性单自由度体系的随机位移反应的统计量,结合非线性静力分析,还可以进行多自由度结构的随机地震反应分析。此外,随机延性需求谱还可以用于结构的抗震可靠度分析。 Seismic response hazard curves of a structure represent the relationship between the seismic response of a structure and the intensity of earthquake. Using the probabihstic ductility demand spectrum, the seismic response hazard curves' of a structure can be established conveniently. Displacement response analysis of nonlinear structures under stochastic seismic is attributed to nonlinear stochastic vibration. The statistic of stochastic displacement response of nonlinear single-degree-of-freedom systems can be simply and effectively obtained by the probabilistic ductility demand spectrum. Combined with nonlinear static analysis, probabilistic ductility demand spectrum can be applied to the analysis of stochastic seismic response of multi-degree-of-freedom systems. Furthermore, probabilistic ductility demand spectrum can be utilized in seismic structural reliability analysis.
出处 《工程力学》 EI CSCD 北大核心 2006年第6期11-15,20,共6页 Engineering Mechanics
基金 国家自然科学基金资助项目(50378034) 教育部博士点专项基金资助项目(20030532020)
关键词 工程抗震 危险性曲线 延性需求谱 非线性静力分析 随机地震反应 抗震可靠度 earthquake resistant engineering hazard curve ductility demand spectrum nonlinear static analysis stochastic seismic response seismic reliability
  • 相关文献

参考文献9

  • 1Takada T,Yamaguchi K.Two-step seismic limit state design procedure based on non-linear LRFD and dynamic response analysis[J].Structural Safety,2002,24:397~415.
  • 2Vamvatsikos D,Cornell C A.Incremental dynamic analysis[J].Earthquake Eng.Struct.Dyn.,2002,31:491~514.
  • 3Vamvatsikos D,Cornell C A.The incremental dynamic analysis and its application to performance-based earthquake engineering[R].Proceeding of the 12th European Conference on Earthquake Engineering,Paper No.479,London,UK,2002.
  • 4Der Kiureghian,A.Probabilistic Modal Combination for Earthquake Loading[C].7th WCEE,1980,Vol.6,Pt.Ⅲ:729~739.
  • 5江近仁 陆钦年.多自由度滞变结构随机地震反应分析的均值反应谱方法[J].地震工程与工程振动,1984,(4):1-13.
  • 6Singhal A,Kiremidjian A S.Method for probabilistic evaluation of seismic structural damage[J].J.Struct.Engng.ASCE,1996,122(12):1459~1467.
  • 7欧进萍,段宇博,刘会仪.结构随机地震作用及其统计参数[J].哈尔滨建筑工程学院学报,1994,27(5):1-10. 被引量:33
  • 8Faella.G.Evaluation of the R/C structures seismic response by means of nonlinear static push-over analysis[R].11th WCEE,1996.
  • 9Chopra A K,Goel R K.A modal pushover analysis procedure for estimating seismic demands for buildings[J].Earthquake Engng and Struct Dyn,2002,31:561~582.

二级参考文献5

  • 1欧进萍,刘会仪.基于随机地震动模型的结构随机地震反应谱及其应用[J].地震工程与工程振动,1994,14(1):14-23. 被引量:35
  • 2高小旺,魏琏,韦承基.基于概率的结构抗震设计方法[J]建筑结构学报,1988(06).
  • 3赵成刚,尹之潜.地震作用与其他荷载的组合方法[J]地震工程与工程振动,1987(03).
  • 4高小旺,鲍霭斌.地震作用的概率模型及其统计参数[J]地震工程与工程振动,1985(01).
  • 5魏琏.建筑结构抗震设计[M]万国学术出版社,1991.

共引文献36

同被引文献28

  • 1翟长海,谢礼立,张敏政.工程结构等强度位移比谱研究[J].哈尔滨工业大学学报,2005,37(1):45-48. 被引量:9
  • 2翟长海,公茂盛,谢礼立,张敏政.工程结构等强度位移比谱影响因素分析[J].哈尔滨工业大学学报,2005,37(4):455-458. 被引量:2
  • 3易伟建,张海燕.结构随机延性需求谱的理论研究[J].工程力学,2006,23(5):14-19. 被引量:11
  • 4童根树,赵永峰.动力P-Δ效应对地震力调整系数的影响[J].浙江大学学报(工学版),2007,41(1):120-125. 被引量:17
  • 5Hong H P, Hong P. Assessment of ductility demand and reliability of bilinear single-degree-of-freedom systems under earthquake loading [J]. Canadian Journal of Civil Engineering, 2007, 34(12): 1606- 1615.
  • 6Goda K, Hong H P. Estimation of seismic loss for spatially distributed buildings [J]. Earthquake Spectra, 2008, 24(4): 889-910.
  • 7Chopra A K, Chintanapakdee C. Inelastic deformation ratios for design and evaluation of structures: Single-degree-of-freedom bilinear systems [J]. Journal of Structural Engineering-ASCE, 2004, 130(9): 1309- 1319.
  • 8Rupakhety R, Sigbjomsson R. Ground motion prediction equations (GMPEs) for inelastic displacement and ductility demands of constant-strength SDOF systems [J] Bulletin of Earthquake Engineering, 2009, 7(3): 661- 679.
  • 9Foliente G C. Hysteresis modeling of wood joints and structural systems [J]. Journal of Structural Engineering - ASCE, 1995, 121(6): 1013-1022.
  • 10Ma F, Zhang H, Bockstedte A, et al. Parameter analysis of the differential model of hysteresis [J]. Journal of Applied Mechanics-Transactions of the ASME, 2004, 71(3): 342-349.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部