摘要
We study a single-server queueing system with state-dependent arrivals and general service distribution, or simply M(n)/G/1/K, where the server follows an N policy and takes multiple vacations when the system is empty. We provide a recursive algorithm using the supplementary variable technique to numerically compute the stationary queue length distribution of the system. The only input requirements are the Laplace-Stieltjes transforms of the service time distribution and the vacation time distribution, and the state-dependent arrival rate. The computational complexity of the algorithm is O(K^3).
基金
partially supported by National Science Foundation under DMI-0200306
supported in part by a grant from National Natural Science Foundation of China under No.70228001.