期刊文献+

ANALYSIS AND COMPUTATIONAL ALGORITHM FOR QUEUES WITH STATE-DEPENDENT VACATIONS Ⅱ: M(n)/G/1/K

ANALYSIS AND COMPUTATIONAL ALGORITHM FOR QUEUES WITH STATE-DEPENDENT VACATIONS Ⅱ:M(n)/G/1/K
原文传递
导出
摘要 We study a single-server queueing system with state-dependent arrivals and general service distribution, or simply M(n)/G/1/K, where the server follows an N policy and takes multiple vacations when the system is empty. We provide a recursive algorithm using the supplementary variable technique to numerically compute the stationary queue length distribution of the system. The only input requirements are the Laplace-Stieltjes transforms of the service time distribution and the vacation time distribution, and the state-dependent arrival rate. The computational complexity of the algorithm is O(K^3).
作者 Ayyar RAHMAN
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2006年第2期191-210,共20页 系统科学与复杂性学报(英文版)
基金 partially supported by National Science Foundation under DMI-0200306 supported in part by a grant from National Natural Science Foundation of China under No.70228001.
关键词 M(n)/G/1 queue queue length distribution recursive algorithm removable server state dependent arrival supplementary variable. M(n)/G/1队列 队列长度分布 递归算法 移动服务 相补变量
  • 相关文献

参考文献25

  • 1X. Chao and A. S. Rahman, Analysis and computational algorithm for queues with state-dependent vacations Ⅰ: G/M(n)/1/K, Journal of Systems Science and Complexity, 2006, 19(1): 36-53.
  • 2D. R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables,Proceedings of the Cambridge Philosophical Society,1955,51: 433-441.
  • 3J. Keilson and A. Kooharian, On time dependent queueing processes, Annals of Mathematical Statistics, 1960, 31: 104-112.
  • 4L. Takacs, Delay distribution for one line with Poisson input, general holding times and various orders of service, Bell System Technical Journal, 1963, 42: 487-504.
  • 5J. W. Cohen, The Sinyle Server Queue, North-Holland, Amsterdam, 1969.
  • 6P. Hokstad, A supplementary variable technique applied to the M/G/1 queue, Scandinavian Journal of Statistics, 1975, 2: 95-98.
  • 7U. C. Gupta and T. S. S. Srinivasa Rao, A recursive method to compute the steady state probabilities of the machine interference model: (M/G/1)/K, Computers and Operations Research, 1994,21: 597-605.
  • 8U. C. Gupta and T. S. S. Srinivasa Rao, On the M/G/1 machine interference model with spares,European Journal of Operations Research, 1996, 89: 164-171.
  • 9M. Yadin and P. Naor, Queueing system with removable service station, Operational Research Quarterly, 1963, 14: 393-405.
  • 10D. P. Heyman, Optimal operating policies for M/G/1 queueing system, Operations Research, 1968,16: 362-382.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部