期刊文献+

配点型无网格法及其迭代求解在导热微分方程中的应用 被引量:1

COLLOCATION MESHLESS AND ITERATION METHOD FOR SOLVING HEAT CONDUCTION DIFFERENTIAL EQUATIONS
下载PDF
导出
摘要 对配点型无网格法在求解导热微分方程中的应用进行研究,提出配点型无网格法的迭代求解算法,并同有限元法进行对比。结果表明,配点型无网格及其迭代方法易于编程实现,且精度与有限元法相当。采用迭代求解法甚至可以不用形成系数矩阵,求解逐点进行,占用内存空间少。选择适当的松弛因子,松弛迭代相对于 Gauss-Seidel迭代可减少迭代次数。研究表明配点型无网格法及其迭代求解方法在求解大规模工程问题时具有优势。 Collocation meshless method is applied to solve the heat conduction differential equations and an iterative meshless technique is proposed. The results show that the collocation meshless and iteration method is convenient in the implementation of programming, and the computation accuracy is almost the same as that of FEM. The iterative meshless method is free of assembling the interpolation matrix, and it only occupies a little storage space because of point iteration. By properly selecting a relaxation factor, the number of iterations can be decreased for the relaxation iterative method compared with the Gauss-Seidel iteration. The preliminary study indicates that collocation meshless and iteration method has advantage for solving large scale engineering problems.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2006年第B05期78-83,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金暨宝钢"钢铁研究联合基金"资助项目(50474088)。
关键词 配点型无网格法 无网格迭代求解法 导热微分方程 Collocation meshless method Iterative meshless technique Heat conduction differential equations
  • 相关文献

参考文献11

  • 1刘欣.无网格有限点数值方法研究及应用[D].北京:清华大学,2000.
  • 2GINGOLD R A, MORAGHAN J J. Smoothed particle hydrodynamics: theory and applications to non-spherical stars[J]. Man. Not. Astrou. Soc., 1977, 181: 375-389.
  • 3HARDY R L. Multiquadric equations of topography and other irregular surfaces[J]. J. Geophys. Res., 1971, 76:1905-1915.
  • 4FRANKER. Scattered data interpolation: test of some methods[J]. Math. Comput., 1982, 38: 181-200.
  • 5KANSA E J. Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics (Ⅱ). Solutions to hyperbolic, parabolic, and elliptic partial differential equations[J]. Comput. Math. Appl.,1990, 19: 147-161.
  • 6WENDLAND H. Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree[J]. Adv. Comput. Math., 1995, 4:389-396.
  • 7WU Zongmin. Multivariate compactly supported positive definite radial functions[J]. Adv. Comput. Math., 1995, 4:283-292.
  • 8BUHMANN M D. Radial functions on compact support[C]//Proceedings of Edinburgh Math. Soc., 1998, 41:33-46.
  • 9姚振汉,王勖成,岑章志.力学与工程[M].北京:清华大学出版社,1999.
  • 10侯军虎,王松岭,安连锁,胡海燕.基于参数映射的通风机流量全程测量的实验研究[J].中国电机工程学报,2003,23(10):209-214. 被引量:36

二级参考文献10

共引文献35

同被引文献89

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部